摘要:
In various aspects, the present invention is directed to implantable neurostimulation leads and methods for their formation. In various additional aspects, the present invention is directed to medical devices having silicone-containing regions with overlying polymeric layers and to methods of forming the same.
摘要:
In various aspects, the present invention is directed to implantable neurostimulation leads and methods for their formation. In various additional aspects, the present invention is directed to medical devices having silicone-containing regions with overlying polymeric layers and to methods of forming the same.
摘要:
The present invention provides a medical device comprising a release region and a therapeutic agent disposed within or beneath the release region, and the release region includes a copolymer comprising a low Tg block and at least one graft copolymer endblock having a main chain and a plurality of side chains.
摘要:
Implantable or insertable medical devices are described. The medical devices comprise (a) a therapeutic agent and (b) a polymeric release region, which controls the release of the therapeutic agent upon administration to a patient. The polymeric release region further comprises a silicone copolymer that contains a plurality of siloxane units and a plurality of non-siloxane units. Also described are methods for administering a therapeutic agent to a patient using the above implantable or insertable medical devices as well as methods of making the above devices.
摘要:
Implantable or insertable medical devices are described. The medical devices comprise (a) a therapeutic agent and (b) a polymeric release region that controls the release of the therapeutic agent upon administration to a patient. The polymer release region comprises a graft copolymer, which further comprises a main chain and a plurality of side chains. One of (a) the main chain and (b) the side chains corresponds to a rubbery phase within the release region at ambient temperatures, while the other corresponds to a hard phase within the release layer at ambient temperatures. Typically, the graft copolymer will comprise one glass transition temperature below ambient temperature and another second glass transition temperature above ambient temperature. Also described are methods for forming the above graft copolymers, methods for administering a therapeutic agent to a patient using the above implantable or insertable medical devices, as well as methods for making the above devices.
摘要:
The present invention relates to phase separated polymeric regions and to their use in conjunction with implantable or insertable medical devices. In some aspects of the invention, phase separated polymeric regions are provided that include (a) at least one biostable polymeric phase and (b) at least one biodisintegrable polymeric phase, which is of nanoscale dimensions and which undergoes biodisintegration such that the phase separated polymeric region becomes a nanoporous polymeric region in vivo. Other aspects of the invention are directed to methods of making implantable or insertable medical devices having at least one nanoporous polymeric region. These methods include (a) providing a phase separated polymeric region comprising a stable polymeric phase and a disintegrable polymeric phase of nanoscale dimensions, (b) selectively removing the disintegrable polymeric phase thereby producing the nanoporous polymeric region. In still other aspects, implantable or insertable medical devices are provided which have phase separated polymeric regions that include (a) at least one block copolymer having at least one biostable polymer block and at least one biodisintegrable polymer block and (b) at least one therapeutic agent which is released in vivo upon implantation or insertion of the medical device.
摘要:
The present invention relates generally to radiation-resistant medical devices which contain polymer regions for release of therapeutic agents. The present invention also relates to radiation-resistant block copolymer materials for use in connection with insertable or implantable medical devices. The radiation-sterilized medical device comprise (a) a release region and (b) at least one therapeutic agent and the release region comprises a radiation resistant copolymer that includes (i) a low Tg hydrocarbon polymer block and (ii) one or more high Tg polymer blocks.
摘要:
According to an aspect of the present invention, implantable or insertable medical devices are provided, which contain one or more polymeric regions, which in turn contain at least one block copolymer. The block copolymer includes (a) at least one high Tg (glass transition temperature) polymer block that contains at least one high Tg vinyl ether monomer and (b) at least one low Tg polymer block that contains at least one low Tg vinyl ether monomer.
摘要:
According to an aspect of the present invention, implantable or insertable medical devices are provided, which contain one or more polymeric regions, which in turn contain at least one block copolymer. The block copolymer includes (a) at least one high Tg (glass transition temperature) polymer block that contains at least one high Tg vinyl ether monomer and (b) at least one low Tg polymer block that contains at least one low Tg vinyl ether monomer.
摘要:
Implantable or insertable medical devices are described. The medical devices comprise (a) a therapeutic agent and (b) a polymeric release region, which controls the release of the therapeutic agent upon administration to a patient. The polymeric release region further comprises an acrylic copolymer, which comprises (i) a plurality of rubbery acrylic units and (ii) a plurality of hard units. Also described are methods for administering a therapeutic agent to a patient using the above implantable or insertable medical devices as well as methods of making the above devices.