Abstract:
A system for real-time digital signal processing employs a single-chip microcomputer device having separate on-chip program ROM and data RAM, with separate address and data paths for program and data. An external program address bus allows off-chip program fetch in an expansion mode, with the opcode returned by an external data bus. A bus interchange module allows transfer between the separate internal program and data busses in special circumstances. The internal busses are 16-bit, while the ALU and accumulator are 32-bit. A multiplier circuit produces a single state 16.times.16 multiply function separate from the ALU, with 32-bit output to the ALU. One input to the ALU passes through a 0-to-15 bit shifter with sign extension.
Abstract:
A radio receiver receives input signals comprised of a plurality of frequency bands lying respectively within a plurality of non-overlapping frequency channels. The signals include an itermittently present reference frequency signal. The radio receiver includes an autolock circuit for measuring the frequency of the intermittently present carrier and for generating digital signals indicating its frequency. A digital processor has inputs coupled to receive the digital signals for calculating in response thereto a selectable demodulating frequency dependent upon the frequency of the intermittently present carrier.
Abstract:
An MOS/LSI semiconductor chip for providing the functions of an electronic calculator or digital processor includes a data storage RAM, a ROM for program instruction storage, an arithmetic unit for performing operations on data, and control circuitry for defining the functions of the machine in response to instructions from the ROM as well as conditions in the machine and inputs from external. Input and output terminals are provided, as for keyboard input and display output. The operation is digit oriented in that an instruction accesses one digit of the RAM. One set of output terminals may be used for sequentially scanning the display digits and keyboard matrix; several of these may be actuated in any order or code combination, so the same terminals may be used to address an auxiliary RAM or drive a printer. Another set of output terminals may provide the segment outputs to the display. The two sets of output terminals are separately controllable. The data to both sets of output terminals is latched, so the machine can execute other instructions while a given output subsists.
Abstract:
A system for real-time digital signal processing employs a single-chip microcomputer device (10) having separate on-chip program ROM (14) and data RAM (15), with separate address and data paths for program and data. An external program address bus (RA) allows off-chip program fetch in an expansion mode, with the opcode returned by an external data bus (D). A bus interchange module (BIM) allows transfer between the separate internal program and data buses (P-Bus and D-Bus) in special circumstances. The internal buses are 16-bit, while the ALU and accumulator (Acc) are 32-bit. A multiplier circuit (M) produces a single state 16.times.16 multiply function separate from the ALU, with 32-bit output to the ALU. One input to the ALU passes through a 0-to-15 bit shifter (S) with sign extension.
Abstract:
A system for real-time digital signal processing employs a single-chip microcomputer device having separate on-chip program ROM and data RAM, with separate address and data paths for program and data; however, the accumulator in the data path may be used as a program address source. An external program address bus allows off-chip program fetch in an expansion mode, with the opcode returned by an external data bus. A bus interchange module allows transfer between the separate internal program and data busses. The internal busses are 16-bit, while the ALU and accumulator are 32-bit. A multiplier circuit produces a single state 16.times.16 multiply function separate from the ALU, with 32-bit output to the ALU. One input to the ALU passes through a 0-to-15 bit shifter with sign extension. A separate shift or offset is provided in coupling the output of the accumulator to an internal data bus for use in scaling when storing the accumulator contents in internal data RAM specified by instructions. Also, the RAM itself has an internal shift function used in convolution.
Abstract:
A system for real-time digital signal processing employs a single-chip microcomputer device having separate on-chip program ROM and data RAM, with separate address and data paths for program and data. An external program address bus allows off-chip program fetch in an expansion mode, with the opcode returned by an external data bus. A bus interchange module allows transfer between the separate internal program and data busses in special circumstances. The internal busses are 16-bit, while the ALU and accumulator are 32-bit. A multiplier circuit produces a single state 16.times.16 multiply function separate from the ALU, with 32-bit output to the ALU. One input to the ALU passes through a 0-to-15 bit shifter with sign extension. The data RAM has an internal shift arrangement useful in processing convolution algorithms. An addressed location in the RAM is read out and also shifted to the next higher location in one instruction cycle.
Abstract:
A system for real-time digital signal processing employs a single-chip microcomputer device having separate on-chip program ROM and data RAM, with separate address and data paths for program and data. An external program address bus allows off-chip program fetch in an expansion mode, with the opcode returned by an external data bus. A bus interchange module allows transfer between the separate internal program and data busses in special circumstances. The internal busses are 16-bit, while the ALU and accumulator are 32-bit. A multiplier circuit produces a single state 16.times.16 multiply function separate from the ALU, with 32-bit output to the ALU. One input to the ALU passes through a 0-to-15 bit shifter with sign extension.
Abstract:
A system for real-time digital signal processing employs a single-chip microcomputer device having separate on-chip program ROM and data RAM, with separate address and data paths for program and data. An external program address bus allows off-chip program fetch in an expansion mode, with the opcode returned by an external data bus. A bus interchange module allows transfer between the separate internal program and data busses in special circumstances. The internal busses are 16-bit, while the ALU and accumulator are 32-bit. A multiplier circuit produces a single state 16.times.16 multiply function separate from the ALU, with 32-bit output to the ALU. One input to the ALU passes through a 0-to-15 bit shifter with sign extension. The data RAM has an internal shift arrangement useful in processing convolution algorithms. An addressed location in the RAM is read out and also shifted to the next higher location in one instruction cycle.
Abstract:
A single parallel bus interconnects the various portions of a central processing unit. Data transmission between the various portions of the processor is based on sequential use of the common bus, and is synchronized by control circuitry. Circuit means are included for providing access of the various portions of the processor to the bus, and includes means for generating data on the bus for transmission, and for detecting data transmitted by the bus. To minimize access time to the bus whenever data is to be transmitted, means are provided for precharging the bus to a reference potential and then selectively discharging the bus to correspond to the data to be transmitted. In a different aspect of the invention a common bus is used to transmit data between the processor and computing equipment separate from the processor. In this aspect of the invention, circuitry is provided for detecting current on the bus corresponding to data, and for amplifying this current to a suitable level, and then generating a voltage suitable for transmission by the bus.
Abstract:
A system for real-time digital signal processing employs a single-chip microcomputer device (10) having separate on-chip program ROM (14) and data RAM (15), with separate address and data paths for program and data. An external program address bus (RA) allows off-chip program fetch in an expansion mode, with the opcode returned by an external data bus (D). A bus interchange module (BIM) allows transfer between the separate internal program and data busses (P-Bus and D-Bus) in special circumstances. The internal busses are 16-bit, while the ALU and accumulator (Acc) are 32-bit. A multiplier circuit (M) produces a single state 16.times.16 multiply function separate from the ALU, with 32-bit output to the ALU. One input to the ALU passes through a 0-to-15 bit shifter (S) with sign extension.