Abstract:
A plasma reactor includes a chamber adapted to support an evacuated plasma environment, a passageway connecting the chamber to a region external of the chamber, the passageway being defined by spaced opposing passageway walls establishing a passageway distance therebetweeen, and a plasma-confining magnet assembly adjacent the passageway. The plasma-confining magnet assembly includes a short magnet adjacent one of the passageway walls and having opposing poles spaced from one another by a distance which a fraction of the gap distance, the short magnet having a magnetic orientation along one direction transverse to the direction of the passageway, and a long magnet adjacent the other one of the opposing passageway walls and generally facing the short magnet across the passageway and having opposing poles spaced from one another along a direction transverse to the passageway by a pole displacement distance which is at least nearly as great as the gap distance, the long magnet having a magnetic orientation generally opposite to that of the short magnet.
Abstract:
A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
Abstract:
A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
Abstract:
The present invention provides a method and an apparatus for cleaning substrates. The cleaning chamber defines a processing cavity adapted to accommodate a substrate therein. In one embodiment, the cleaning chamber includes an upper plate, a lower plate and a gas manifold disposed there between. A substrate is disposed in the processing cavity without contacting other chamber components by a Bernoulli effect and/or by a fluid cushion above and/or below the substrate. Fluid is flowed into the processing cavity at an angle relative to a radial line of the substrate to induce rotation of the substrate during a cleaning and drying process. A cleaning process involves flowing one or more fluids onto a surface of the substrate during its rotation. One-sided and two-sided cleaning and drying is provided.