Abstract:
A control device is provided which controls wireless communication linkage between communication devices. The control device includes a communication unit configured to perform wireless communication with first and second communication devices; a user interface unit configured to generate a communication unit active signal according to a control of a user; and a control unit configured to activate the communication unit in response to the communication unit active signal. The communication unit receives communication linkage information for communication linkage between the first and second communication devices from the first communication device and sends the communication linkage information to the second communication device.
Abstract:
A method of mixing video bitstreams and an apparatus performing the method are disclosed. The method includes generating a mixed scalable video coding (SVC) bitstream by mixing a plurality of SVC bitstreams for each layer based on a screen configuration of a user device, extracting a single SVC bitstream corresponding to a single layer from the mixed SVC bitstream based on a reception environment of the user device, and transmitting the single SVC bitstream to the user device.
Abstract:
Provided is a ferrule endface inspecting device for optical communication modules. The ferrule endface inspecting device includes an XY movement stage, a mount head moving in a two-axis direction including an X-axis direction and a Y-axis direction by the XY movement stage and rotating on an X-Y plane, a jig unit disposed under the mount head to fix optical communication modules with a built-in ferrule, and a control unit selecting a ferrule region located at an inspection start position from among a plurality of ferrule regions extracted from a whole image of the jig unit captured by a first camera and analyzing a ferrule endface image obtained through photographing by a second camera, which has rotated and moved to the inspection start position, to determine whether there is a defect of a ferrule endface. The first and second cameras are provided on a side of the mount head.
Abstract:
Provided is a micro robot position detection device. The device includes a micro robot position detection unit that uses a micro robot control parameter to filter a reflected signal of an ultra wide-band impulse radar signal emitted to a micro robot to extract, as a micro robot signal, a natural oscillating frequency signal generated when the micro robot is driven through control of external electromagnetic field, and analyzes the micro robot signal based on a transmission and reception parameter of the ultra wide-band impulse radar signal to calculate position information for the micro robot. Also, the device may further include an image matching unit that receives position information for the micro robot and performs position correction on the received position information based on pre-stored reference image data and the image data.