Abstract:
Systems and methods for inline and automatic dilution of chemicals of interest for speciation and subsequent analysis by ICP spectrometry are described. A system embodiment includes a first valve to receive a sample into a holding loop; a plurality of syringe pumps coupled to the first valve to deliver an inline diluted sample from the first valve; and a second valve coupled to the first valve to receive the inline diluted sample from the first valve into a sample holding loop coupled to the second valve, the second valve configured to couple to at least one of an eluent source or a carrier fluid source to receive at least one of an eluent fluid or a carrier fluid to transfer the inline diluted sample from the sample holding loop to a speciation column to separate one or more species from the inline diluted sample.
Abstract:
A system includes a sample selector device, a chromatographic column selectively connectable to the sample selector device, and a spectrometry analysis device selectively connectable to the sample selector device. The sample selector device is configured to supply multiple individual samples to the chromatographic column to separate components of the individual samples. The sample selector device is also configured to store the separated components of the individual samples. The sample selector device is further configured to supply the separated components of the individual samples to the spectrometry analysis device. In embodiments of the disclosure, the components of the individual samples can be chromatographically separated while the spectrometry analysis device is offline.
Abstract:
A system includes a first aerosolization device (e.g., a nebulizer and a spray chamber/desolvation device in fluid communication with the nebulizer) configured to furnish a first aerosol, and a second aerosolization device (e.g., a second nebulizer and a second spray chamber/desolvation device in fluid communication with the second nebulizer) configured to furnish a second aerosol. The first aerosolization device is balanced with the second aerosolization device. The system also includes an output coupled with the first aerosolization device and the second aerosolization device. The output is configured to supply at least one of the first aerosol or the second aerosol (e.g., to a torch). The system further includes a selection device coupling the first aerosolization device and the second aerosolization device to the output. The selection device is configured to selectively provide at least one of the first aerosol or the second aerosol to the output.
Abstract:
A method includes supplying a reagent to a column, where the column is configured to purify an element from a sample matrix for isotopic analysis. The method also includes loading the column with the sample matrix, and supplying a second reagent to collect the element retained by the column. The method further includes loading the column with a second sample mixture, and collecting an element from the second sample mixture retained by the column. A column configured to separate an element from a sample matrix for isotopic analysis includes a resin configured to retain the element. The column also includes a first frit disposed of a first end of the column and a second frit disposed of a second end of the column. The column is configured to receive a first reagent in a first flow direction and a second reagent in a second flow direction different from the first flow direction.
Abstract:
Systems and methods for inline and automatic dilution of chemicals of interest for speciation and subsequent analysis by ICP spectrometry are described. A system embodiment includes a first valve to receive a sample into a holding loop; a plurality of syringe pumps coupled to the first valve to deliver an inline diluted sample from the first valve; and a second valve coupled to the first valve to receive the inline diluted sample from the first valve into a sample holding loop coupled to the second valve, the second valve configured to couple to at least one of an eluent source or a carrier fluid source to receive at least one of an eluent fluid or a carrier fluid to transfer the inline diluted sample from the sample holding loop to a speciation column to separate one or more species from the inline diluted sample.
Abstract:
A method for internal standardization of cool plasma ICP-MS using one or more enriched stable isotopes includes introducing an enriched stable isotope of a chemical species to a sample containing a non-enriched isotope of the chemical species to form a sample and standard mixture. In implementations, the enriched stable isotope is introduced via an inline syringe addition to a flow of a sample solution containing a non-enriched isotope of the chemical species to be analyzed. The method also includes introducing the sample and standard mixture to an ICP-MS under cool plasma conditions. The method also includes determining an ionization amount of the enriched stable isotope by the ICP-MS. The method further includes correlating an ionization amount of the non-enriched isotope based on the determined ionization amount of the enriched stable isotope.