摘要:
A slider mounted CPP GMR or TMR read head sensor is protected from electrostatic discharge (ESD) damage and from noise and cross-talk from an adjacent write head by means of a balanced resistive/capacitative shunt. The shunt includes highly resistive interconnections between upper and lower shields of the read head and a grounded slider substrate and a low resistance interconnection between the lower pole piece of the write head and the substrate. The capacitances between the pole piece and the upper shield, the upper shield and the lower shield and the lower shield and the substrate are made equal by either forming the shields and pole piece with equal surface areas and separating them with dielectrics of equal thicknesses, or by keeping the ratio of area to insulator thicknesses equal.
摘要:
A slider mounted CPP GMR or TMR read head sensor is protected from electrostatic discharge (ESD) damage and from noise and cross-talk from an adjacent write head by means of a balanced resistive/capacitative shunt. The shunt includes highly resistive interconnections between upper and lower shields of the read head and a grounded slider substrate and a low resistance interconnection between the lower pole piece of the write head and the substrate. The capacitances between the pole piece and the upper shield, the upper shield and the lower shield and the lower shield and the substrate are made equal by either forming the shields and pole piece with equal surface areas and separating them with dielectrics of equal thicknesses, or by keeping the ratio of area to insulator thicknesses equal.
摘要:
A slider mounted CPP GMR or TMR read head sensor is protected from electrostatic discharge (ESD) damage and from noise and cross-talk from an adjacent write head by means of a balanced resistive/capacitative shunt. The shunt includes highly resistive interconnections between upper and lower shields of the read head and a grounded slider substrate and a low resistance interconnection between the lower pole piece of the write head and the substrate. The capacitances between the pole piece and the upper shield, the upper shield and the lower shield and the lower shield and the substrate are made equal by either forming the shields and pole piece with equal surface areas and separating them with dielectrics of equal thicknesses, or by keeping the ratio of area to insulator thicknesses equal.
摘要:
A slider mounted CPP GMR or TMR read head sensor is protected from electrostatic discharge (ESD) damage and from noise and cross-talk from an adjacent write head by means of a balanced resistive/capacitative shunt. The shunt includes highly resistive interconnections between upper and lower shields of the read head and a grounded slider substrate and a low resistance interconnection between the lower pole piece of the write head and the substrate. The capacitances between the pole piece and the upper shield, the upper shield and the lower shield and the lower shield and the substrate are made equal by either forming the shields and pole piece with equal surface areas and separating them with dielectrics of equal thicknesses, or by keeping the ratio of area to insulator thicknesses equal.
摘要:
A magnetic read/write head and slider assembly and method for forming said magnetic read/write head and slider assembly, wherein said assembly has improved heat spreading and dissipation properties and exhibits significantly reduced thermal protrusion during operation. The method of formation is simple and efficient, involving only the extension of one of the conductive mounting pads so that it is in thermal contact with a portion of the slider assembly surface that is over the read/write element.
摘要:
A method of fabricating a magnetic read/write head and slider assembly, wherein the assembly has improved heat spreading and dissipation properties and the read/write head exhibits significantly reduced thermal protrusion during operation. The method of fabrication is simple and efficient, involving only the extension of at least one of the conductive mounting pads so that it is in thermal contact with a portion of the slider surface that is directly above the read/write element.
摘要:
A magnetic read/write head and slider assembly and method for forming said magnetic read/write head and slider assembly, wherein said assembly has improved heat spreading and dissipation properties and exhibits significantly reduced thermal protrusion during operation. The method of formation is simple and efficient, involving only the extension of one of the conductive mounting pads so that it is in thermal contact with a portion of the slider assembly surface that is over the read/write element.
摘要:
Problems such as thermal pole tip protrusion result from thermal mismatch between the alumina and pole material during the writing process. This, and similar problems due to inadequate heat dissipation, have been overcome by dividing the bottom shield into two pieces both of which sit on top of a non-magnetic heat sink. Heat generated by the coil during writing is transferred to the non-magnetic heat sink whence it gets transferred to the substrate. With this approach, the head not only benefits from less field disturbance due to the small shield but also improves heat dissipation from the additional heat sink
摘要:
Spin valve heads with overlaid leads have several advantages over butted contiguous junction designs, including larger signal output and better head stability. However, in any overlaid design there is always present at least one high resistance layer between the GMR layer and the conductive leads. This leads to an effective read width that is greater than the actual physical width. This problem has been overcome by inserting a highly conductive channeling layer between the GMR stack and the conducting lead laminate. This arrangement ensures that, at the intersection between the leads and the GMR stack, virtually all the current moves out of the free layer into the leads thereby providing an effective read width for the device that is very close to the physical read width defined by the spacing between the two leads. A process for manufacturing the device is also described.
摘要:
Problems such as thermal pole tip protrusion result from thermal mismatch between the alumina and pole material during the writing process. This, and similar problems due to inadequate heat dissipation, have been overcome by dividing the bottom shield into two pieces both of which sit on top of a non-magnetic heat sink. Heat generated by the coil during writing is transferred to the non-magnetic heat sink whence it gets transferred to the substrate. With this approach, the head not only benefits from less field disturbance due to the small shield but also improves heat dissipation from the additional heat sink.