摘要:
A method for forming a self-aligned contact, (SAC), opening, for a semiconductor device, has been developed. The process features the formation of partial silicon nitride spacers, on the sides of polycide gate structures, via a partial anisotropic RIE procedure, applied to a silicon nitride layer, also resulting in a thin layer of silicon nitride remaining on regions between polycide gate structures. After deposition of an overlying insulator layer, a two step, anisotropic RIE procedure is used to create the SAC opening in the insulator layer, and in the underlying, thin silicon nitride layer. The first step, of the two step, SAC opening procedure, selectively removes first insulator layer, while the second step, of the two step, SAC opening procedure, selectively removes the thin silicon nitride layer.
摘要:
The present invention includes forming polysilicon plugs between the gate structures and word lines in a BPSG layer formed on the gate structures and the word lines. A polysilicon layer, a tungsten silicide layer and a silicon oxide layer are sequentially formed on the BPSG layer. Then, the multi-layers are etched to the surface of the BPSG layer. Next, the BPSG layer is slightly etched to expose the polysilicon plug. Oxide spacers are formed on the sidewalls of the layers. A silicon nitride layer is formed over the bit lines, oxide spacers and on the polysilicon plugs. An oxide layer is formed on the silicon nitride layer. Subsequently, the oxide layer is patterned to form node contact holes. An etching is used to etch the silicon nitride layer. A first conductive layer is formed along the surface of the oxide layer, the contact holes. The top portion of the first conductive layer is removed. The oxide layer is removed to expose the silicon nitride layer. A dielectric film is deposited along the surface of the first conductive layer. Finally, a second conductive layer is formed over the dielectric film.
摘要:
A method for making self-aligned contacts on a semiconductor substrate using a hard mask. After the transistor is formed, a blanket insulating layer is formed on said semiconductor substrate. A hard mask having openings on the blanket insulating layer is formed over the insulating layer. The openings overlay the source/drain region and part of the gate electrode structure. Using the patterned hard mask, the insulating layer is etched to the gate electrode protecting layer. Then self-aligned contacts is completed by etching the insulating layer to expose the source/drain regions using the gate electrode protecting layer and the insulating sidewall spacers as the mask.
摘要:
A process for fabricating an interconnect structure, featuring contact of the interconnect structure, to an exposed side of an underlying conductive plug structure, where the conductive plug structure is used to communicate with an active device region in a semiconductor substrate, has been developed. The process features the use of simple photolithographic patterns, such as a stripe opening, exposing a group of gate structures, and a group of spaces, located between the gate structures, to be used for subsequent contact plug formation. This is in contrast to conventional processing, in which a more difficult photolithographic procedure is used to create smaller, individual openings, to individual spaces between gate structures. In addition this invention features a self-aligned opening, exposing only a side of a contact plug structure. An overlying interconnect structure then contacts only the exposed side of the underlying contact plug structure, again reducing photolithographic difficulties, encountered with conventional methods of creating a non-self aligned opening to an underlying contact plug.
摘要:
A method for forming a contact hole of a capacitor of a DRAM cell is disclosed. The method includes forming a first conductive layer on a semiconductor substrate, and forming a first dielectric layer on the first conductive layer. After patterning to etch the first dielectric layer and the first conductive layer, a second dielectric layer is formed on the semiconductor substrate and the first dielectric layer. Next, the second dielectric layer is anisotropically etched back to form a first spacer on sidewalls of the first dielectric layer and the first conductive layer. A first silicon oxide layer is formed over the semiconductor substrate, the first dielectric layer, the first spacer, followed by patterning to etch the first silicon oxide layer, wherein the first spacer and the first dielectric layer are used for facilitating self-aligned etching. Thereafter, a second conductive layer is formed over the semiconductor substrate, wherein surface of the first silicon oxide layer is exposed, and a second silicon oxide layer is formed over the second conductive layer and the first silicon oxide layer. Finally, patterning to etch a portion of the second silicon oxide layer to expose a portion of the second conductive layer, therefore a contact hole of the capacitor is formed.
摘要:
DRAM cells having self-aligned node-contacts-to-bit lines with tungsten landing plug contacts for reduced aspect ratio contact openings and via holes is achieved. A planar insulating layer is formed, and openings for bit line contacts, node contacts, and landing plugs on the chip periphery are concurrently etched. A W/TiN layer is patterned to form bit lines, capacitor node, and multilevel contact landing plugs on the DRAM chip. The landing plugs reduce the aspect ratio of the openings for the multilevel contacts. Bit line sidewall spacers are formed, and a BPSG is deposited and planarized. Capacitor openings are etched in the BPSG aligned over the node contacts. A conformal conducting layer is deposited, and a polymer is deposited and planarized. The polymer and the conducting layer are polished back to complete the capacitor bottom electrodes in the capacitor openings. The polymer is removed. An inter-electrode dielectric layer and a conformal conducting layer (top electrode) are deposited and patterned to complete the capacitors. Capacitor openings are filled with a planarized insulator and the interlevel contact openings etched to the landing plugs therein have reduced aspect ratios. W/TiN plugs are formed in the openings, and a metal layer (Ti--TiN/AlCu/TiN) is deposited and patterned to form the first level of metal interconnections.
摘要:
A method of fabricating contact holes in high density integrated circuits uses landing plugs to reduce the aspect ratio of the the node contact holes in order to improve the processing window of deep contact holes. Along with nitride spacers on the sidewalls of a transistor gate structure, polysilicon hard masks and polysilicon spacers are used as etching masks in a self-aligned contact process. In addition, the landing plugs incorporate the polysilicon spacers as part of landing plug to increase the contact area. As a result, wide contact processing windows can be achieved in high density integrated circuits.
摘要:
A memory system comprising a memory array having a plurality of memory units, a column decoder, a row decoder, a selecting/driving circuit and a sensing circuit is disclosed. Each memory unit comprises a gate electrode coupled to a word lines, a source region coupled to a source line or a first bit line, a drain region coupled to a drain line or a second bit line, a first spacer between the source region and the gate electrode and a second spacer between the drain region and the gate electrode. When a first-bit program operation is performed on the memory unit, a switch-on signal is applied to the gate, a programming signal is applied to the source region and the drain region is switched to ground. As the memory unit is activated, the carriers are injected and stored in a first spacer, thus represents a first bit in the memory unit.
摘要:
A process for fabricating non-volatile memory by tilt-angle ion implantation comprises essentially the steps of implanting sideling within a nitride dielectric layer heterogeneous elements such as, for example, Ge, Si, N2, O2, and the like, for forming traps capable of capturing more electrons within the nitride dielectric layer such that electrons can be prevented from binding together as the operation time increased; etching off both ends of the original upper and underlying oxide layers to reduce the structural destruction caused by the implantation of heterogeneous elements; and finally, depositing an oxide gate interstitial wall to eradicate electron loss and hence promote the reliability of the device.
摘要:
A memory array including a plurality of word lines, a plurality of first source/drain lines, a plurality of second source/drain lines, and a plurality of memory units. Each memory unit includes a gate electrode coupled to one of the word lines, a first source/drain region coupled to one of the first source/drain lines or first bit lines, a second source/drain region coupled to one of the second source/drain lines or second bit lines, a first spacer between the first source/drain region and the gate electrode to store electrons or electric charges, and a second spacer between the second source/drain region and the gate electrode to store electrons or electric charges.