摘要:
A process for fabricating fine features such as small gate electrodes on a transistor. The process involves the jet-printing of a mask and the plating of a metal to fabricate sub-pixel and standard pixel size features in one layer. Printing creates a small sub-pixel size gap mask for plating a fine feature. A second printed mask may be used to protect the newly formed gate and etch standard pixel size lines connecting the small gates.
摘要:
A method to pattern films into dimensions smaller than the printed pixel mask size. A printed mask is deposited on a thin film on a substrate. The second mask layer is selectively deposited onto the film, but not to the printed mask. A third mask is then printed onto the substrate to pattern a portion of the second mask. Certain solvents are then used to remove the printed mask but not the mask layer on the thin film. The mask layer is then used to form a pattern on the thin film in combination with etching. The features formed in the thin film are smaller than the smallest dimension of the printed mask. The coated mask layer can be a self-assembled mono-layer or other material that selectively binds to the thin film.
摘要:
The roughness and structural height of printed metal lines is used to pin a fluid. This fluid deposits a top contact material which is connected to the bottom printed contacts through pinholes in the hydrophobic polymer layer. This results in a sandwich-like contact structure achieved in a self-aligned deposition process and having improved source-drain contact for all-additive printed circuits. In one form, the present technique is used for thin film transistor applications, but it may be applied to electrodes in general.
摘要:
The roughness and structural height of printed metal lines is used to pin a fluid. This fluid deposits a top contact material which is connected to the bottom printed contacts through pinholes in the hydrophobic polymer layer. This results in a sandwich-like contact structure achieved in a self-aligned deposition process and having improved source-drain contact for all-additive printed circuits. In one form, the present technique is used for thin film transistor applications, but it may be applied to electrodes in general.
摘要:
The roughness and structural height of printed metal lines is used to pin a fluid. This fluid deposits a top contact material which is connected to the bottom printed contacts through pinholes in the hydrophobic polymer layer. This results in a sandwich-like contact structure achieved in a self-aligned deposition process and having improved source-drain contact for all-additive printed circuits. In one form, the present technique is used for thin film transistor applications, but it may be applied to electrodes in general.
摘要:
The roughness and structural height of printed metal lines is used to pin a fluid. This fluid deposits a top contact material which is connected to the bottom printed contacts through pinholes in the hydrophobic polymer layer. This results in a sandwich-like contact structure achieved in a self-aligned deposition process and having improved source-drain contact for all-additive printed circuits. In one form, the present technique is used for thin film transistor applications, but it may be applied to electrodes in general.
摘要:
This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.
摘要:
Susceptibility of darkfield etch masks (majority of the mask area is opaque) to pinhole defects, transferred pattern, non-uniformity, etc. due to ejector dropout or drop misdirection, and long duty cycles due to large-area coverage, when using digital lithography (or print patterning) is addressed by using a clear-field print pattern that is then coated with etch resist material. The printed clear field pattern is selectively removed to form an inverse pattern (darkfield) within the coated resist layer. Etching then removes selected portions of an underlying (e.g., encapsulation, conductive, etc.) layer. Removal of the mask produces a layer with large-area features with substantially reduced defects.
摘要:
A method to pattern films into dimensions smaller than the printed pixel mask size. A printed mask is deposited on a thin film on a substrate. The second mask layer is selectively deposited onto the film, but not to the printed mask. A third mask is then printed onto the substrate to pattern a portion of the second mask. Certain solvents are then used to remove the printed mask but not the mask layer on the thin film. The mask layer is then used to form a pattern on the thin film in combination with etching. The features formed in the thin film are smaller than the smallest dimension of the printed mask. The coated mask layer can be a self-assembled mono-layer or other material that selectively binds to the thin film.
摘要:
A Vertical Cavity Surface Emitting Laser (VCSEL) assembly including a VCSEL structure having a light-emitting region located on its surface, a relatively wettable region of a surface modifier coating formed over the light emitting region, and a microlens formed on the relatively wettable region. A relatively non-wettable region of the surface modifier coating is formed around the light-emitting region (e.g., on the electrode surrounding the light-emitting region). The surface modifier coating is formed, for example, from one or more organothiols that change the surface energies of the light-emitting region and/or the electrode to facilitate self-assembly and self-registration of the microlens material. The microlens material is printed, microjetted, or dip coated onto the VCSEL structure such that the microlens material wets to the relatively wettable region, thereby forming a liquid bead that is reliably positioned over the light-emitting region. The liquid bead is then cured to form the microlens.