摘要:
A catalytic vessel for adsorbing catalytic metals, such as from automotive exhaust gases, and carrying out three-way catalysis includes an inlet at an upstream end, a plurality of catalytic chambers located downstream of the inlet, and an outlet. At least one of the catalytic chambers contains a plurality of sheet members preferably made of steel and adapted for deposition of a metal selected from the group of noble and non-noble metals, and more particularly from the group including platinum, rhodium, rhenium, palladium, and gold. The vessel may be used in a catalytic system which contains a liquid source of metal catalysts, such as a solution or a gasoline additive, from which the metal catalysts are added to a combustion system, and the catalytic vessel, which collects the metal catalysts and is a site for three-way catalytic conversion of starting materials such as automotive emissions to final products.
摘要:
Catalytic metal additives that directly dissolve in gasoline in concentrations providing efficient and economical three-way catalysis of exhaust gases from internal combustion engines. The additives are compounds of noble (e.g., Pt, Pd, Au and Rh) or non-noble (e.g., Re) metals. The preferred compounds have polar metal ligand bonds, preferably with inorganic ligands such as halogens, oxygen, etc., and/or salts with highly ionic (polarizable) cations such as of alkali metals. The preferred additive is a combination of X.sub.2 PtCl.sub.6, RhCl.sub.3 and XReO.sub.4, where X=K, Rh or Cs. A combination of these finely ground materials is fabricated into a briquette or filter which is deposited in the gas tank or placed in a gas line. The catalytic metals are carried by the exhaust gases through the exhaust system where they are deposited on surfaces of the system to convert toxic emissions. In this way, the invention allows for the delivery of efficient gasoline additives without the use of solvents or extraneous agents.
摘要:
A catalytic vessel for adsorbing catalytic metals, such as from automotive exhaust gases, and carrying out three-way catalysis includes an inlet at an upstream end, a plurality of catalytic chambers located downstream of the inlet, and an outlet. At least one of the catalytic chambers contains a plurality of sheet members preferably made of steel and adapted for deposition of a metal selected from the group of noble and non-noble metals, and more particularly from the group consisting of platinum, rhodium, rhenium, palladium, and gold. The vessel may be used in a catalytic system which contains a liquid source of metal catalysts, such as a solution or a gasoline additive, means for adding metal catalysts to a combustion system, and the catalytic vessel, which collects the metal catalysts and is a site for three-way catalytic conversion of starting materials such as automotive emissions to final products.
摘要:
A catalyst solution comprising one or more compounds of a metal catalyst and an organic solvent selected from the group consisting of a glycol derivative, an alkyl pyrrolidone, and an alkoxy ethyl ether, wherein no additional chloride-containing compounds are added to the solution. The metal can be selected from the group consisting of platinum, rhenium and rhodium. The compounds can be selected from the group consisting of H.sub.2 PtCl.sub.6.6H.sub.2 O, Re.sub.2 (CO).sub.10, Re.sub.2 O.sub.7, LiReO.sub.4 and RhCl.sub.3.4H.sub.2 O. The catalytic solutions are useful in conversion of pollutants from automotive engines and the like. In a particularly preferred embodiment, the solution contains three metals: platinum, rhenium, and rhodium.
摘要:
A catalyst solution comprising one or more compounds of a metal catalyst and an organic solvent selected from the group consisting of a glycol derivative, an alkyl pyrrolidone, and an alkoxy ethyl ether, wherein no additional chloride-containing compounds are added to the solution. The metal can be selected from the group consisting of platinum, rhenium and rhodium. The compounds can be selected from the group consisting of H.sub.2 PtCl.sub.6.6H.sub.2 O, Re.sub.2 (CO).sub.10, Re.sub.2 O.sub.7, LiReO.sub.4 and RhCl.sub.3.4H.sub.2 O. The catalytic solutions are useful in conversion of pollutants from automotive engines and the like. In a particularly preferred embodiment, the solution contains three metals: platinum, rhenium, and rhodium.
摘要:
A catalyst vessel including an inlet at an upstream end, a plurality of catalytic chambers located downstream of the conduit, wherein at least two chambers are connected by a plate having one or more orifices therein to permit gas flow through from the first chamber to the second chamber, and wherein at least one surface in the chamber is adapted for deposition of a metal selected from the group consisting of platinum, rhodium, and rhenium, and an outlet at its downstream end.
摘要:
A catalyst system comprising a metal catalyst in a liquid catalyst solution, means for adding metal catalyst from the solution to a combustion system, and a catalyst collector for collecting the metal catalyst which serves as a reaction vessel. A method for converting emissions from a combustion chamber comprising providing a source of metal catalyst in a liquid solution; adding the metal catalyst to a combustion system; carrying the metal catalyst to a catalyst collector: depositing the metal catalyst on a solid surface in the catalyst collector; and converting the emissions for the combustion chamber by contacting the emissions and the metal catalyst. Preferably, the metal catalyst solution contains a plurality of metals.
摘要:
Monolithic metal oxide structures, and processes for making such structures, are disclosed. The structures are obtained by heating a metal-containing structure having a plurality of surfaces in close proximity to one another in an oxidative atmosphere at a temperature below the melting point of the metal while maintaining the close proximity of the metal surfaces. Exemplary structures of the invention include open-celled and closed-cell monolithic metal oxide structures comprising a plurality of adjacent bonded corrugated and/or flat layers, and metal oxide filters obtained from a plurality of metal filaments oxidized in close proximity to one another.
摘要:
A thin-walled monolithic iron oxide structure, and process for making such a structure, is disclosed. The structure comprises a monolithic iron oxide structure obtained from oxidizing a thin-walled iron-containing, preferably plain steel, structure at a temperature below the melting point of iron. The preferred wall thickness of the steel is less than about 0.3 mm. The preferred iron oxides of the invention are hematite, magnetite, and combinations thereof. The thin-walled structures of the invention have substantially the same physical shape as the iron starting structure. Thin-walled iron-oxide structures of the invention can be used in a wide variety of applications, including gas and liquid flow dividers, corrosion resistant components of automotive exhaust systems, catalytic supports, filters, thermal insulating materials, and sound insulating materials. Iron oxides of the invention consisting substantially of magnetite can be electrically heated and, therefore, can be applicable in applications such as electrically heated thermal insulation, electric heating of liquids and gases passing through channels, and incandescent devices. Additionally, combination structures using both magnetite and hematite can be fabricated.
摘要:
Monolithic metal oxide structures, and processes for making such structures, are disclosed. The structures are obtained by heating a metal-containing structure having a plurality of surfaces in close proximity to one another in an oxidative atmosphere at a temperature below the melting point of the metal while maintaining the close proximity of the metal surfaces. Exemplary structures of the invention include open-celled and closed-cell monolithic metal oxide structures comprising a plurality of adjacent bonded corrugated and/or flat layers, and metal oxide filters obtained from a plurality of metal filaments oxidized in close proximity to one another.