Abstract:
A mass spectrometer suitable to measure both positive and negative particles, such as ions for example in a vacuum chamber. This spectrometer is provided with a turnable permanent magnet segment, which provides the gap of a yoke with adequate magnetic flux having the appropriate direction to separate the positive or the negative particles. Changing the polarity adjusts the flight path of the ions. Thus, negatively charged ions and positively charged ions will follow similar flight paths under opposite polarities, permitting the use of a single array of detectors. One or more coils may be used in place of or in addition to the turnable permanent magnet segment in order to provide the appropriate magnetic flux to the gap, and/or facilitate the turning process of the turnable magnet segment. The turnable magnet and/or the coils may be inside or outside the vacuum chamber. The detector may comprise at least one detector area, two charge mode amplifiers coupled to the detector area, a first CCD shift register coupled to a first one of the charge mode amplifiers and a second CCD shift register coupled to a second one of the charge mode amplifiers.
Abstract:
This invention pertains fasteners which are characterized by easy insertion and extraordinarily difficult separation of items that they attach together. This is achieved by a combination of snapping segments with multi-engagement configurations of engageable holes. The snapping segments may comprise anti-opening and/or anti-sliding portions, which immensely increase the strength with which the fasteners hold the objects together. Provision of an elastic body in the vicinity of the bottom section of the fasteners provides water and gas proof properties, and further eliminates squeaking noises. Vehicles comprising objects connected together by the fastening devices described and claimed herein are part of the instant invention.
Abstract:
A Spring fastener with critical configuration of the barbs, which allow the extraction of the fastener without destruction of the slot and/or the fastener. This critical configuration of the barbs allows spring fasteners to be used in slots of various widths and prevents rattling, which would take place in the case of spring fasteners of the present state of the art. The critical configuration is based on the special dimensions and special shape of the barbs with regard to the parts and the slots involved in assemblies of the spring fasteners and the parts. Assemblies of miscellaneous parts connected together by means of such spring fasteners, as well as vehicles comprising such assemblies may be made.
Abstract:
A fastener with critical configuration of the barbs, which allow the extraction of the fastener without destruction of the slot and/or the fastener. This critical configuration of the barbs allows fasteners to be used in slots of various widths and prevents rattling, which would take place in the case of fasteners of the present state of the art. The critical configuration is based on the special dimensions and special shape of the barbs with regard to the parts and the slots involved in assemblies of the fasteners and the parts. Assemblies of miscellaneous parts connected together by means of such fasteners, as well as vehicles comprising such assemblies may be made. In addition, fasteners with a combination of low and high barbs, which combination prevents rattling of the fastener and allows secure attachment on a part, such as a sheet metal, for example, are included.
Abstract:
A mass spectrometer suitable to measure both positive and negative particles, such as ions for example in a vacuum chamber. This spectrometer is provided with a turnable permanent magnet segment, which provides the gap of a yoke with adequate magnetic flux having the appropriate direction to separate the positive or the negative particles. Changing the polarity adjusts the flight path of the ions. Thus, negatively charged ions and positively charged ions will follow similar flight paths under opposite polarities, permitting the use of a single array of detectors. One or more coils may be used in place of or in addition to the turnable permanent magnet segment in order to provide the appropriate magnetic flux to the gap, and/or facilitate the turning process of the turnable magnet segment. The turnable magnet and/or the coils may be inside or outside the vacuum chamber. The detector may comprise at least one detector area, two charge mode amplifiers coupled to the detector area, a first CCD shift register coupled to a first one of the charge mode amplifiers and a second CCD shift register coupled to a second one of the charge mode amplifiers.
Abstract:
This invention relates to methods of controlling the oxidation of cyclohexane to adipic acid in the presence of a monobasic acid solvent, by extracting the catalyst from the reaction mixture, outside the reaction zone. Substantially all the unreacted cyclohexane, the majority of adipic acid, and preferably substantially all the monobasic acid solvent are removed from the reaction product. In the case that substantially all the monobasic acid solvent is removed, protic solvent, is added intermittently or continuously in the reaction mixture during the removal of the monobasic acid solvent, preferably by distillation, thus preventing solids precipitation. Dipolar aprotic solvent is then added in the presence of an adequate amount of the protic solvent (the total of dipolar aprotic solvent and the protic solvent constituting a novel combination solvent) to maintain a single liquid phase, followed by a step of extracting substantially all the catalyst in protic solvent. The catalyst extract is preferably recycled to the reaction zone, where the cyclohexane is oxidized to adipic acid. Thus, the novel combination solvent, which is preferably a combination of cyclohexanone with water, allows the dissolution of the reaction product, preferably after removal of the majority of the adipic acid, followed by a substantially complete extraction of the catalyst in water. No catalyst precipitation takes place, and all disadvantages and costs of solids handling are prevented.
Abstract:
This invention relates to a fastener, which expands by the insertion of an expanding member, preferably a screw. The fastener comprises a substantially flat head and two expandable legs. The head has an upper side and a lower side, preferably separated by a gap. The head also has a hole (round, oblong or otherwise shaped) in which the expanding body may engage or pass through for expanding the legs and securing one object to another object, such as a plastic panel to a metal sheet. The fastener also comprises a Y-shaped funnel configuration, which has been formed by a partial cut of the legs. Miscellaneous configurations of the Y shaped legs provide improved guidance to the expanding member, improved engagement to at least one of the objects, such as the metal sheet for example, and improved engagement to the expanding member, among other advantages. The fastener may also comprise portions under the upper side of the head, which portions are engageable to the expanding member. Further, the fastener of the present invention may comprise an elastic body at least under the head. This invention also relates to vehicles comprising parts connected by the fasteners of this invention.
Abstract:
Methods and devices for controlling the reaction rate and/or reactivity of a hydrocarbon to an intermediate oxidation product, such as an acid, within predetermined limits, are disclosed. Control of the reaction rate and/or reactivity within predetermined limits is achieved by monitoring and controlling the oxidant consumption rate. According to the present invention, examples of ways to determine the oxidant consumption rate include, but are not limited to, monitoring the flow rates of incoming and outgoing oxidant, monitoring pressure differentials after temporarily ceasing entry and exit of gases, and monitoring the flow rates of incoming and outgoing gases, and monitoring the rates of incoming and outgoing hydrocarbon. The methods and devices of the present invention are particularly advantageous in the case that the hydrocarbon is cyclohexane, the intermediate oxidation product is adipic acid, the solvent is acetic acid, the catalyst is cobalt (II) acetate tetrahydrate, and the initiator or promoter is cyclohexane, or acetaldehyde, or a mixture of thereof.
Abstract:
Methods for controlling the reaction rate of a hydrocarbon to an acid by making phase-related adjustments are disclosed. In order to improve reaction rate of the oxidation, a single phase at the operating temperature is attained and maintained by adjusting one or more of gaseous oxidant flow rate, pressure in the reaction zone, temperature in the reaction zone, feed rate of hydrocarbon, feed rate of solvent, feed rate of water if water is being fed, feed rate of the catalyst. The preferred hydrocarbon is cyclohexane, the preferred acid is adipic acid, the preferred solvent is acetic acid, and the preferred catalyst is cobalt acetate. Other hydrocarbons include, but are not limited to, methylated benzene, methylated structures involving two benzene rings, and methylated naphthalene.
Abstract:
This invention relates to methods of preparing dibasic acids, such as adipic acid for example, by oxidizing a hydrocarbon with a gas containing an oxidant, preferably oxygen. A respective hydrocarbon is reacted with a gaseous oxidant to form dibasic acid in a mixture which preferably contains a solvent, a catalyst, and an initiator. The temperature of the mixture is then lowered to a point at which solid dibasic acid is precipitated, while maintaining a single liquid phase. At least part of the formed acid is then removed. The lowering of the temperature is preferably performed at least partially by an operation selected from a group consisting of (a) evaporating at least part of the hydrocarbon or otherwise adjusting the hydrocarbon content of the mixture (b) lowering the pressure (c) adding matter having a temperature lower than the initial temperature (d) removing heat by external means (e) removing a first amount of heat by any suitable means, and adding a second amount of heat by external means, the first amount of heat being greater than the second amount of heat, and (f) a combination thereof.