Abstract:
An improved method of preparing ultra-thin TEM samples that combines backside thinning with an additional cleaning step to remove surface defects on the FIB-facing substrate surface. This additional step results in the creation of a cleaned, uniform “hardmask” that controls the ultimate results of the sample thinning, and allows for reliable and robust preparation of samples having thicknesses down to the 10 nm range.
Abstract:
An improved method of preparing ultra-thin TEM samples that combines backside thinning with an additional cleaning step to remove surface defects on the FIB-facing substrate surface. This additional step results in the creation of a cleaned, uniform “hardmask” that controls the ultimate results of the sample thinning, and allows for reliable and robust preparation of samples having thicknesses down to the 10 nm range.
Abstract:
An improved method of preparing a TEM sample. A sample is extracted from a work piece and attached to a probe for transport to a sample holder. The sample is attached to the sample holder using charged particle beam deposition, and mechanically separated from probe by moving the probe and the sample holder relative to each other, without severing the connection using a charged particle beam.
Abstract:
An improved method of preparing a TEM sample. A sample is extracted from a work piece and attached to a probe for transport to a sample holder. The sample is attached to the sample holder using charged particle beam deposition, and mechanically separated from probe by moving the probe and the sample holder relative to each other, without severing the connection using a charged particle beam.
Abstract:
An improved method of preparing ultra-thin TEM samples that combines backside thinning with an additional cleaning step to remove surface defects on the FIB-facing substrate surface. This additional step results in the creation of a cleaned, uniform “hardmask” that controls the ultimate results of the sample thinning, and allows for reliable and robust preparation of samples having thicknesses down to the 10 nm range.
Abstract:
An improved method of preparing ultra-thin TEM samples that combines backside thinning with an additional cleaning step to remove surface defects on the FIB-facing substrate surface. This additional step results in the creation of a cleaned, uniform “hardmask” that controls the ultimate results of the sample thinning, and allows for reliable and robust preparation of samples having thicknesses down to the 10 nm range.
Abstract:
An improved method for extracting and handling multiple samples for S/TEM analysis is disclosed. Preferred embodiments of the present invention make use of a micromanipulator that attaches multiple samples at one time in a stacked formation and a method of placing each of the samples onto a TEM grid. By using a method that allows for the processing of multiple samples, the throughput of sample prep in increased significantly.