Abstract:
A method of transmitting data may include receiving feedback information that includes effective channel bandwidths, signal-to-noise ratios (SNRs) associated with multiple optical channels on an optical link, and individual SNRs associated with subcarriers on each optical channel. The method may include determining multiple subcarrier power allocation schemes based on the feedback information. Each subcarrier power allocation scheme may be associated with a corresponding optical channel from the multiple optical channels and may be configured to allocate a signal power among subcarriers configured to transmit on the corresponding optical channel. The method may include determining, based on the feedback information, an optical power allocation scheme configured to allocate an optical power among the multiple optical channels. The method may include transmitting data on the multiple optical channels based on the multiple subcarrier power allocation schemes and the optical power allocation scheme.
Abstract:
An example embodiment includes a fiber optic integrated circuit (IC). The fiber optic IC includes an integrated power supply. The integrated power supply includes a filter, an active switch, and a pulse width modulator (“PWM”). The filter is configured to convert a signal to an output signal of the integrated power supply. The active switch is configured to control introduction of the signal to the filter. The PWM is configured to generate a PWM output signal that triggers the active switch.
Abstract:
An example embodiment includes a fiber optic integrated circuit (IC). The fiber optic IC includes an integrated power supply. The integrated power supply includes a filter, an active switch, and a pulse width modulator (“PWM”). The filter is configured to convert a signal to an output signal of the integrated power supply. The active switch is configured to control introduction of the signal to the filter. The PWM is configured to generate a PWM output signal that triggers the active switch.
Abstract:
An example embodiment includes a fiber optic integrated circuit (IC). The fiber optic IC includes an integrated power supply. The integrated power supply includes a filter, an active switch, and a pulse width modulator (“PWM”). The filter is configured to convert a signal to an output signal of the integrated power supply. The active switch is configured to control introduction of the signal to the filter. The PWM is configured to generate a PWM output signal that triggers the active switch.
Abstract:
An example embodiment includes a fiber optic integrated circuit (IC). The fiber optic IC includes an integrated power supply. The integrated power supply includes a filter, an active switch, and a pulse width modulator (“PWM”). The filter is configured to convert a signal to an output signal of the integrated power supply. The active switch is configured to control introduction of the signal to the filter. The PWM is configured to generate a PWM output signal that triggers the active switch.
Abstract:
A method of transmitting data may include receiving feedback information that includes effective channel bandwidths, signal-to-noise ratios (SNRs) associated with multiple optical channels on an optical link, and individual SNRs associated with subcarriers on each optical channel. The method may include determining multiple subcarrier power allocation schemes based on the feedback information. Each subcarrier power allocation scheme may be associated with a corresponding optical channel from the multiple optical channels and may be configured to allocate a signal power among subcarriers configured to transmit on the corresponding optical channel. The method may include determining, based on the feedback information, an optical power allocation scheme configured to allocate an optical power among the multiple optical channels. The method may include transmitting data on the multiple optical channels based on the multiple subcarrier power allocation schemes and the optical power allocation scheme.