Abstract:
A hybrid electric vehicle (HEV) and methods for operation having a powertrain that includes an engine, an electric machine and storage battery, and a transmission coupled via a drive shaft to wheels having regenerative-friction brakes. The HEV and transmission incorporate regenerative and adaptive braking and a capability to detect nearby obstacles and other vehicles. Such controllers monitor and report the nearby-vehicle distance and a brake pedal tip-lift time and position. In response, the controller(s) cause the electric machine to generate electric power with negative torque, which decelerates the transmission and wheels at a constant or variable rate, adjusted so the nearby-vehicle distance during deceleration equals or exceeds a predetermined, lead-lag distance to nearby vehicles or obstacles. An adaptive cruise signal may also be generated that may indicate driver vehicle preferred settings and profiles, and constant, adjustable, learned, and driver selectable deceleration profiles, which are utilized to control deceleration during braking.
Abstract:
An exemplary clutch device of an electrified vehicle includes a first member having a plurality of lugs about an axis, and a second member including a plurality of apertures. The plurality of lugs are selectively moveable axially into corresponding apertures to couple together rotation of the first member and the second member. Interfaces between the first member and the second member when under positive torque are angled differently than interfaces between the first member and the second member when under negative torque.
Abstract:
An exemplary clutch device of an electrified vehicle includes a first member having a plurality of lugs about an axis, and a second member including a plurality of apertures. The plurality of lugs are selectively moveable axially into corresponding apertures to couple together rotation of the first member and the second member. Interfaces between the first member and the second member when under positive torque are angled differently than interfaces between the first member and the second member when under negative torque.
Abstract:
A vehicle includes an internal combustion engine, a driver interface having a first driver-activated selector, and a controller. The controller selectively operates the engine according to a first mode and a second mode. In the first mode the engine runs continuously. In the second mode the engine is turned off in response to a first set of operating conditions and turned on in response to a second set of operating conditions. The controller further, in response to a driver activation of the first selector, controls the engine according to the first mode and, in response to an anticipated end of a first vehicle acceleration event subsequent the driver activation of the first selector, controls the engine according to the second mode.
Abstract:
A vehicle includes a connector for coupling a battery in the vehicle to a load external to the vehicle. An energy management system includes a controller that is programmed to operate the battery in a vehicle according to a target state of charge range that is defined by upper and lower state of charge limits. In response to receiving a request to prepare for power generation at a destination prior to arriving at the destination, the controller increases the lower state of charge limit as the distance to the destination decreases. In response to the request, the battery is operated during the drive cycle to the destination so that the battery state of charge at the destination allows the battery to provide power to the external load for a predetermined period of time before an engine is started.
Abstract:
A vehicle comprises a hybrid powertrain includes an electric machine coupled between an automatic gearbox and an engine. The vehicle includes paddle shifters configured to output a driver requested gear change. The hybrid powertrain is configured to selectively operate in an economy mode that optimizes fuel economy. While operating in the economy mode, a controller may selectively inhibit the driver requested gear change when the change may negatively impact fuel economy. In the economy mode, the driver requested gear change may be inhibited during a demand for braking. If the driver requested gear change is a downshift request, the downshift is inhibited and simulated using electric machine torque.
Abstract:
A vehicle includes a regenerative braking system, which may include an electric machine, configured to provide regenerative braking torque to vehicle traction wheels. The vehicle further includes at least one controller configured to provide indicia for display to indicate performance of the regenerative braking system. The indicia represent a comparison of a braking profile that is recorded during a deceleration event and a calculated braking profile that is based on a detected forward object. In various embodiments, the indicia may include a numerical or letter grade representative of a similarity between the recorded braking profile and the calculated braking profile and/or a visual representation of the comparison of the recorded braking profile and the calculated braking profile.
Abstract:
A vehicle includes a connector for coupling a battery in the vehicle to a load external to the vehicle. An energy management system includes a controller that is programmed to operate the battery in a vehicle according to a target state of charge range that is defined by upper and lower state of charge limits. In response to receiving a request to prepare for power generation at a destination prior to arriving at the destination, the controller increases the lower state of charge limit as the distance to the destination decreases. In response to the request, the battery is operated during the drive cycle to the destination so that the battery state of charge at the destination allows the battery to provide power to the external load for a predetermined period of time before an engine is started.