Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, an engine is couple to a transmission in response to a transmission upshift to reduce transmission output shaft torque disturbances.
Abstract:
A method of operating a vehicle includes measuring a transmission output torque, measuring impeller and turbine speeds, estimating a transmission component torque, and adjusting an engine torque to avoid overstressing a transmission component such as a gear. The method does not rely on an accurate estimate of engine torque. Furthermore, the method does not rely on a fixed transmission torque rating in each gear ratio.
Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, an engine is couple to a transmission in response to a transmission upshift to reduce transmission output shaft torque disturbances.
Abstract:
A transmission includes a main housing having a rear wall and at least one sidewall extending from the rear wall. The rear wall has an outer side and has an inner side that cooperates with the at least one sidewall to define an interior. A planetary gearset is disposed within the interior. An output shaft is coupled to the gearset and extends through a hole defined in the rear wall. An extension housing is connected to a rear portion of the main housing such that the outer side and the extension housing cooperate to define a torque-sensor cavity. The output shaft extends through the cavity. A torque sensor is disposed within the cavity adjacent to the output shaft and has an electrical connector disposed in a wall of the extension housing.
Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, compensation is provided for a dual mass flywheel positioned in a vehicle driveline. The approaches may reduce driveline torque disturbances.
Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, torque demand of a driveline after a shift is forecast to determine if it is desirable to start the engine early so that engine torque is available after the shift. The approach may improve vehicle torque response.
Abstract:
A transmission calibration tool automatically generates a detailed gearbox model based on a user input transmission topology description. During transmission calibration, the tool accepts inputs from transmission speed and torque sensors and estimates component torques for each gear element and each shift element. Following a shift or other transmission event, the calibration tool plots the component torques as a function of time, permitting the calibration engineer to better understand what is occurring during the event, and thus reducing the time required for calibration. The calibration tool also adapts several transmission component models and outputs the adapted models to provide insight into actual transmission component behavior.
Abstract:
A method of operating a vehicle includes measuring a transmission output torque, measuring impeller and turbine speeds, estimating a transmission component torque, and adjusting an engine torque to avoid overstressing a transmission component such as a gear. The method does not rely on an accurate estimate of engine torque. Furthermore, the method does not rely on a fixed transmission torque rating in each gear ratio.
Abstract:
A vehicle powertrain includes a transmission and a clutch. The slip of the clutch is adjusted to a predefined target where a sensed parameter of a shaft of the transmission corresponds to a specified noise, vibration, and harshness (NVH) level in the powertrain. The sensed parameter of the transmission shaft may be one of acceleration, speed, and torque of the transmission shaft. The transmission shaft may be one of the input shaft and output shaft of the transmission.
Abstract:
A transmission and control method are disclosed which ensure proper stroke pressure and minimize torque transients during a shift event. The transmission includes a clutch having a torque capacity based on a fluid pressure, a torque sensor adapted to measure a torque value that varies in relationship to the torque capacity, and a controller. The method includes varying the fluid pressure around a predetermined value, measuring a resulting torque difference with the torque sensor, and adjusting a clutch control parameter if the resulting torque difference is less than a threshold value.