Abstract:
A driving pattern based plug-in hybrid electric vehicle (PHEV) energy consumption preplanning process enables a PHEV trip-oriented energy management control (TEMC) to utilize scalable levels of available trip foreknowledge in order to optimize the onboard energy (fuel and electricity) usage. The preplanning process generates an optimal battery state-of-charge (SOC) depletion profile for a given trip to be traveled by a PHEV. The preplanning process may generate the battery SOC profile using a driving pattern based dynamic programming (DP) algorithm. The TEMC controls the onboard energy usage in accordance with the battery SOC profile, which is optimized for the trip. The preplanning process makes use of spatial domain normalized drive power demand (SNDP) (or S-NDP) distributions in which each set of distributions is indicative of a respective driving pattern. The trip foreknowledge is used to select the driving pattern best representative of the driving process for the trip.
Abstract:
A vehicle includes an electric machine configured to propel the vehicle using battery power. The vehicle also includes a controller programmed to operate the electric machine along a predetermined route based on a superposition of a plurality of partitionings of the route. Each of the partitionings is based on a different force characteristic associated with the route and defines at least one segment transition, where each segment transitions defines an end of a previous segment and a beginning of a subsequent segment. The predetermined route segments are such that no two adjacent segments of the superposition are defined by a same force characteristic.
Abstract:
An active damping system provides a torque adjustment command that is combined with the raw motor torque command of a vehicle to compensate for oscillations and vibrations in the driveline of a hybrid vehicle. Active damping may be provided by a derivative controller or by a lead-lag compensation between initiation of clutch engagement and full clutch engagement. Active damping is terminated upon full clutch engagement.
Abstract:
A vehicle having and engine and traction battery and a method of operating an engine are disclosed. A controller operates the engine according to quantized engine power levels. The quantization level depends upon a total power demand. For low values of total power demand, the selected quantization level may be at least equal to the total power demand. For high values of total power demand, the selected quantization level may be less than or equal to the total power demand. In between low and high values, the selected quantization level may be the quantization level nearest the total power demand. The traction battery may receive or provide power depending on the selected quantization level.
Abstract:
A system and method for controlling battery power in a hybrid vehicle for a given driver demand that balances battery state of charge and battery capacity limits while operating the engine at a system efficient engine power. Predictive information may be used to predict battery energy usage during a future time window that indicates a charging opportunity (excess power will be absorbed by the battery) or a boosting opportunity (battery power will be discharged). Based on this information and the current state of charge of the battery, an associated battery power for a given driver demand is determined.
Abstract:
An active damping system provides a torque adjustment command that is combined with the raw motor torque command of a vehicle to compensate for oscillations and vibrations in the driveline of a hybrid vehicle. Active damping may be provided by a derivative controller or by a lead-lag compensation between initiation of clutch engagement and full clutch engagement. Active damping is terminated upon full clutch engagement.
Abstract:
A system and method for controlling battery power in a hybrid vehicle for a given driver demand that balances battery state of charge and battery capacity limits while operating the engine at a system efficient engine power. Predictive information may be used to predict battery energy usage during a future time window that indicates a charging opportunity (excess power will be absorbed by the battery) or a boosting opportunity (battery power will be discharged). Based on this information and the current state of charge of the battery, an associated battery power for a given driver demand is determined.
Abstract:
A method of operating a vehicle having a continuously variable transmission to simulate a step-ratio transmission. The method includes increasing an output torque based on a modified accelerator pedal position in response to a corresponding virtual gear selection. An initial virtual gear is determined or selected from a predetermined finite number of available virtual gears based on an accelerator pedal position, a vehicle speed, and whether an upshift or downshift has been requested. The engine speed and engine torque are controlled to meet driver expectations of increased or decreased engine speed or vehicle output torque.
Abstract:
A hybrid vehicle and method of control include an internal combustion engine and at least one traction motor operated such that engine speed is a function of vehicle speed and target engine power. Target engine power, in turn, is a function of target wheel torque, vehicle speed, and battery state of charge. Target wheel torque, in turn, is a function of vehicle speed and accelerator pedal position. In a select shift mode, these calculations are adjusted based on a virtual gear number which varies in response to driver activation of shift selectors. The adjustments result in decreased engine speed and decreased wheel torque when higher virtual gear number are selected for given accelerator pedal positions and vehicle speeds. The ratio of engine speed to vehicle speed is not necessarily constant when operating in select shift mode.
Abstract:
A hybrid vehicle and method of control include an internal combustion engine and at least one traction motor operated in an automatic mode such that the combined wheel torque is a function of accelerator pedal position and vehicle speed. In a select shift mode, wheel torque is also a function of a virtual gear number. The virtual gear number varies in response to driver activation of shift selectors or automatically in response to changes in vehicle speed. The vehicle transitions into select shift mode in response to driver activation of a downshift selector. When the transition occurs, an initial virtual gear number is selected to ensure that wheel torque increases.