Abstract:
A shift strategy is provided for a hybrid electric vehicle to cause a speed of a motor to approach a target motor speed to increase fuel economy for an engine operating in a hybrid drive mode. A controller shifts the transmission according to a magnitude of a driver torque demand, the current rotor or impeller speed, and whether the motor is consuming or producing current. The controller shifts the transmission according to one shift schedule when the motor is motoring, and according to another shift schedule when the motor is generating power.
Abstract:
Methods and systems are provided for improving engine restart operations occurring during a transmission shift in a hybrid vehicle. Engine speed is controller during cranking and run-up to approach a transmission input shaft speed that is based on the future gear of the transmission shift. Engine speed is controlled via adjustments to spark, throttle, and/or fuel, to expedite engine speed reaching the synchronous speed.
Abstract:
A method of controlling a vehicle, in which the vehicle includes an engine, a traction motor, and a clutch configured to selectively couple the engine to the motor, includes commanding the traction motor to provide an incremental torque. The motor is commanded to provide the incremental torque in response to the clutch being in a slipping condition. The magnitude of the commanded incremental torque is in response to the lesser of first and second torques. The first torque corresponds to an engine torque, and the second torque corresponds to a clutch torque capacity.
Abstract:
A parallel hybrid electric vehicle discrete step-ratio automatic transmission shift strategy attempts to cause a speed of a motor to approach a target motor speed to increase fuel economy for a coupled engine when in hybrid mode. A controller shifts the transmission according to a magnitude of a driver torque demand, the current rotor or impeller speed, and whether the motor is consuming or producing current.
Abstract:
Systems and methods for transitioning a torque source between speed control and torque control modes during a vehicle creep mode are disclosed. In one example, torque of an electric machine is adjusted in response to a torque converter model. The torque converter model provides for a locked or unlocked torque converter clutch.
Abstract:
In a vehicle, a controller divides a route into route segments. The controller operates a traction battery over the route segments to achieve a target state of charge upon completion of one of the route segments. The target state of charge is based on a target battery power defined by a classification for each of the route segments including the one of the route segments according to a set of fuzzy rules applied to vehicle acceleration and road grade associated with the route segments. Fuzzy rules may be applied to the classification for each of the route segments
Abstract:
A method of smoothing hybrid vehicle engine shutdown. A powered and rotating electric machine is used to slow deceleration of an unpowered and rotating engine by transferring torque through a clutch from the machine to the unpowered engine. Prior to the machine being powered, torque may be transferred through the clutch from the unpowered and rotating engine to the unpowered machine to accelerate passage of the engine through a resonance frequency.
Abstract:
A parallel hybrid electric vehicle discrete step-ratio automatic transmission shift strategy attempts to cause a speed of a motor to approach a target motor speed to increase fuel economy for a coupled engine when in hybrid mode. A controller shifts the transmission according to a magnitude of a driver torque demand, the current rotor or impeller speed, and whether the motor is consuming or producing current.
Abstract:
A method for starting an engine includes preloading a spring of a torsion damper by transmitting torque having a magnitude less than engine cranking torque from an electric motor through a clutch to the spring, before cranking the engine, increasing a torque capacity of the clutch, and using the electric motor to crank the engine in response to a command to start the engine.
Abstract:
A method for controlling a vehicle regenerative braking event includes maintaining a converter clutch closed while braking, while an engine connected to the impeller is running, opening the converter clutch when impeller speed reaches a reference speed difference relative to engine idle speed, and while the engine is off, opening the converter clutch when impeller speed reaches a speed required for a transmission pump, connected to an impeller, to produce line pressure at a desired magnitude.