Abstract:
The present disclosure provides a method for subculturing pluripotent stem cells suitable for mass culture. The method for subculturing pluripotent stem cells includes: a culture step of culturing pluripotent stem cells to obtain a cell aggregation; and a dividing step of dividing the cell aggregation by passing the cell aggregation through a mesh-like film, which has a plurality of through-holes each having an opening dimension of 30 μm to 80 μm, at a speed of 15 cm/sec to 150 cm/sec.
Abstract:
The present disclosure provides a membrane separation method of a cell suspension which can appropriately separate cells from debris, and a cell culture device. That is, membrane separation processing of the cell suspension is performed using a filtration membrane which includes an inlet-side opening formed on one surface and an outlet-side opening, which is formed on the other surface and communicates with the inlet-side opening, and in which the inlet-side opening and the outlet-side opening are disposed at positions deviated in a direction parallel to the surfaces of the membrane.
Abstract:
A culture container has a first inflow port and a first outflow port. The first flow path connects the first outflow port to the first inflow port. A storage container is provided within the first flow path and has a second inflow port which is connected to the first outflow port and a second outflow port which is connected to the first inflow port. A second flow path connects a first region within the first flow path, and a second region within the first flow path. A division processing portion is provided within the second flow path, performs a division process of dividing a cell aggregation flowing in from the first flow path, and allows the cells subjected to the division process to flow out into the first flow path via the second region. A medium supply portion supplies a medium to the inside of the first flow path.
Abstract:
The present invention provides a polarizing plate that includes a polarizer, and an optical film including an alignment layer, an optically anisotropic layer, and an optically isotropic acrylic polymer layer on at least one surface of the polarizer, in which the optically anisotropic layer is a layer formed by irradiating a polymerizable composition including a liquid crystal compound that is directly applied to the alignment layer with light to polymerize the liquid crystal compound, the acrylic polymer layer is a layer formed by curing a polymerizable composition including (meth)acrylate that is directly applied to a surface of the layer formed from the polymerizable composition including a liquid crystal compound, and the thickness of the acrylic polymer layer is larger than the thickness of the optically anisotropic layer. According to the present invention, it is possible to provide a polarizing plate having a small thickness.
Abstract:
There is provided a cell culture bag including: plural tubular portions having gas permeability in which a tube axis direction is directed to a first direction and which are arranged side by side in a second direction intersecting with the first direction and are separated from each other using a partition wall; and communication portions having gas permeability which allow communication between two mutually adjacent tubular portions of the plural tubular portions in an intermediate region R between one end and the other end of the tubular portions.
Abstract:
The polarizing plate fabrication method includes the following: (1) preparing a transfer material including a temporary support and a transfer body including an optical anisotropic layer and an optical anisotropic layer; (2) peeling the temporary support and separating it from the transfer body; and (3) adhering the transfer body to a film including a polarizer, in which both the optical anisotropic layer and the optical anisotropic layer are layers formed of a polymerizable composition including a liquid crystal compound applied onto the temporary support, and the optical anisotropic layer and the optical anisotropic layer both have in-plane retardation, and a difference between slow axis directions in the optical anisotropic layer and the optical anisotropic layer is in a range of 3° to 90°. The fabrication method allows adhering of an optical anisotropic layer having a variety of optical compensation capabilities to a variety of polarizers in a minimum constitution.
Abstract:
The present invention provides a polarizing plate that includes a polarizer and an optically anisotropic layer that is a layer formed on at least one surface of the polarizer by irradiating a polymerizable composition including a liquid crystal compound with light to polymerize the liquid crystal compound, in which only an adhesive layer or only an adhesive layer and a protective film provided on a surface of the polarizer are provided between the optically anisotropic layer and the polarizer, and a method for producing the polarizing plate including laminating a transfer material including a temporary support and an optically anisotropic layer on a film including a polarizer and then peeling off the temporary support of the transfer material. According to the present invention, it is possible to provide a polarizing plate having a small thickness.