Abstract:
Provided is a long aluminum foil capable of suppressing, in a case where the aluminum foil is provided with a region where through-holes are not formed, occurrence of deformation at a boundary portion between a region where through-holes are formed and the region where through-holes are not formed. The long aluminum foil includes, in a width direction orthogonal to a longitudinal direction, a perforated portion, a non-perforated portion, and a boundary portion between the perforated portion and the non-perforated portion, in which the perforated portion has a plurality of through-holes penetrating therethrough in a thickness direction, the non-perforated portion does not have a through-hole, the boundary portion has a plurality of through-holes penetrating therethrough in the thickness direction and a plurality of non-through-holes, and an opening ratio of the through-hole in the boundary portion gradually decreases from a perforated portion side to a non-perforated portion side.
Abstract:
A presensitized plate having a long press life and excellent resistance to scum and corrosive micro-stains and capable of on-press development is provided. The presensitized plate includes a photosensitive layer containing (A) a sensitizing dye, (B) a polymerization initiator, (C) a polymerizable compound, and (D) a binder polymer; and a protective layer which are formed on a support in this order. The support is prepared from an aluminum alloy plate containing intermetallic compound particles with a circle equivalent diameter of 0.2 μm or more at a surface density of 35,000 pcs/mm2 or more and aluminum carbide particles with a maximum length of 1 μm or more in an amount of up to 30,000 pcs/g.
Abstract translation:提供具有长的印刷寿命和优异的抗浮渣和腐蚀性微污染并且能够进行印刷机发展的预感板。 预感板包括含有(A)增感染料,(B)聚合引发剂,(C)可聚合化合物和(D)粘合剂聚合物的感光层; 和保护层,其形成在载体上。 该载体由含有金属间化合物颗粒的铝合金板制备,其中当量直径为0.2μm或更大的圆形当量的表面密度为35,000pcs / mm 2或更高,最大长度为1μm或更大的碳化铝颗粒的量为 高达30,000个/ g。
Abstract:
An object of the present invention is to provide a method for manufacturing an aluminum plate which is simple, is high in productiveness, allows the use of arbitrary aluminum materials, and can be suitably used for collectors having excellent adhesiveness to active material layers, a collector for a storage device, and a storage device. The method for manufacturing an aluminum plate of the present invention is a method for manufacturing an aluminum plate having an aluminum substrate having a plurality of through holes in a thickness direction, including an oxidized film-forming step of forming an oxidized film by carrying out an oxidized film-forming treatment on a surface of the aluminum substrate having a thickness in a range of 5 μm to 1,000 μm and a through hole-forming step of forming through holes by carrying out an electrochemical dissolution treatment after the oxidized film-forming step.
Abstract:
A lithographic printing plate support of the invention includes an aluminum plate and an anodized aluminum film which has micropores extending from a surface of the anodized film opposite from the aluminum plate in a depth direction of the anodized film; the micropores each have a large-diameter portion extending from the anodized film surface to an average depth (depth A) of 75 to 120 nm and a small-diameter portion which communicates with the bottom of the large-diameter portion; the average diameter of the large-diameter portion at the anodized film surface is at least 10 nm but less than 30 nm; a ratio of the depth A to the average diameter (depth A/average diameter) of the large-diameter portion is more than 4.0 but up to 12.0; and an average diameter of the small-diameter portion at the communication level is more than 0 but less than 10 nm.
Abstract:
An object of the present invention is to provide an aluminum foil and an aluminum member for electrodes having good adhesiveness to an electrode material and high conductivity with the electrode material. Provided is an aluminum foil having through holes including an aluminum oxide film having a thickness of 25 nm or less on a surface of the aluminum foil, and further a hydrophilic layer on a part of a surface of the aluminum oxide film.
Abstract:
A lithographic printing plate support in which surface unevenness due to surface treatment has been suppressed and a presensitized plate of excellent sensitivity are produced from an aluminum alloy plate containing iron, silicon, titanium and boron by specifying the state in which TiB2 particles are present in the surface layer and the width of the crystal grains, and by having specific indicators relating to the respective concentrations of iron and silicon in the surface layer following graining treatment fall within specific ranges. In a method of manufacturing the lithographic printing plate support, an aluminum alloy melt having specified alloying ingredients is subjected to a specified casting process to have the amount of the alloying ingredients in solid solution following cold rolling fall within specified ranges.