Abstract:
The purpose of the present invention is to provide a planographic printing plate precursor which suppresses bleeding or transferring of a substance over time while maintaining edge stain preventing performance, a plate-making method of a planographic printing plate, and a printing method using the planographic printing plate. The planographic printing plate precursor includes a support; and an image recording layer formed on the support, in which layer arrangement described in any one of the following i to iv is provided, a hydrophilizatioin agent layer containing a hydrophilization agent is provided in a region in a specific position of the layer arrangement from the end portion of the planographic printing plate precursor to a portion inside the end portion by 1 cm, and the image recording layer includes an infrared absorbing agent and a specific radical polymerizable compound. i: a mode in which the support layer and the image recording layer are provided in this order. ii: a mode in which the support layer, an undercoat, and the image recording layer are provided in this order. iii: a mode in which the support layer, the image recording layer, and a protective layer are provided in this order. iv: a mode in which the support layer, the undercoat, the image recording layer, and the protective layer are provided in this order.
Abstract:
An object of the present invention is to provide a chemical solution that, in the case of being used in a step of bringing a contact-target member and the chemical solution into contact with each other, is less likely to cause a predetermined defect in the contact-target member. A chemical solution according to the present invention includes an organic solvent and a metal-containing particle including a metal element selected from the group consisting of Fe, Ni, and Zn, wherein an I value determined by a method X is 0.010 to 10.000, method X: the chemical solution is applied onto a substrate to prepare a subject; a surface of the subject is analyzed by being scanned with laser using laser-ablation-inductively coupled plasma-mass spectrometry, to obtain charts for the metal elements in which an abscissa axis indicates laser scanning time and an ordinate axis indicates ion detection intensity; the ion detection intensity of the charts is accumulated for the scanning time to determine accumulated ion detection intensities of the metal elements; the accumulated ion detection intensities of the metal elements are added up to determine a total accumulated ion detection intensity; and the total accumulated ion detection intensity is divided by a laser scanning area to obtain an I value in units of counts/mm2.
Abstract:
Provided are a method for inspecting a chemical solution, the method being able to analyze minute foreign matter in the chemical solution, a method for producing a chemical solution, a method for controlling a chemical solution, a method for producing a semiconductor device, a method for inspecting a resist composition, the method being able to analyze minute foreign matter in the resist composition, a method for producing a resist composition, a method for controlling a resist composition, and a method for checking a contamination status of a semiconductor manufacturing apparatus, the method being able to control minute foreign matter in the semiconductor manufacturing apparatus. The method for inspecting a chemical solution includes a step 1X of preparing a chemical solution; a step 2X of applying the chemical solution onto a semiconductor substrate; and a step 3X of measuring whether there is a defect on a surface of the semiconductor substrate to obtain positional information of the defect on the surface of the semiconductor substrate, irradiating, based on the positional information, the defect on the surface of the semiconductor substrate with a laser beam, collecting an analytical sample obtained by the irradiation by using a carrier gas, and subjecting the analytical sample to inductively coupled plasma mass spectrometry.
Abstract:
A black ink composition includes: carbon black and a water-insoluble resin that covers at least a part of the surface of the carbon black; a cyan pigment and a water-insoluble resin that covers at least a part of the surface of the cyan pigment; a magenta pigment and a water-insoluble resin that covers at least a part of the surface of the magenta pigment; water-insoluble resin particle; and water, wherein a content ratio of the carbon black is from 1.0 to 2.0% by mass with respect to the total mass of the composition, and a total amount of pigments is from 1.8 to 3.5% by mass with respect to the total mass of the composition. The black ink composition can be used in an ink set and an image forming method.
Abstract:
An ink jet composition which contains a pigment selected from the group consisting of a self-dispersing pigment and a resin-coated pigment in which at least a portion of a surface of a pigment particle is coated with a water-insoluble resin; at least one selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol and polyethylene glycol, the content of which is from 0.01% by mass to less than 1.00% by mass based on the total mass of the composition; a resin particle that is insoluble or hardly soluble in water; a wax particle that is insoluble or hardly soluble in water; and water.
Abstract:
Provided are a defect removal device and a defect removal method capable of removing defects of a semiconductor substrate with high accuracy, and a pattern forming method and a method of manufacturing an electronic device using the semiconductor substrate from which defects on a surface are removed. The defect removal device includes: a first light source unit that emits incidence light for detecting a defect on a semiconductor substrate; a surface defect measurement unit including a detection unit that detects the defect on the semiconductor substrate based on radiated light radiated by reflection or scattering of the incidence light from the defect of the semiconductor substrate; a removal unit that irradiates the semiconductor substrate with laser light to remove the defect based on position information of the defect on the semiconductor substrate; and an alignment unit that adjusts optical axes of the incidence light and the laser light, in which the optical axes of the incidence light and the laser light are adjusted by the alignment unit such that the incidence light and the laser light are emitted to the semiconductor substrate.
Abstract:
Provided are an analysis apparatus and an analysis method capable of analyzing a smaller defect on a surface of a semiconductor substrate. An analysis apparatus includes a surface defect measurement unit that measures presence or absence of a defect on a surface of a semiconductor substrate, and obtains positional information on the surface of the semiconductor substrate for the defect on the surface of the semiconductor substrate, and an analysis section that performs inductively coupled plasma mass spectrometry by irradiating the defect on the surface of the semiconductor substrate with laser light based on the positional information of the defect on the surface of the semiconductor substrate, and collecting an analysis sample obtained by the irradiation using a carrier gas.
Abstract:
Provided is a lithographic printing plate precursor having extremely excellent and excellent on-board developability even after the lithographic printing plate precursor is preserved for a long period of time, and excellent preservation stability, by a lithographic printing plate precursor including, on a support, an image recording layer containing (A) a thermoplastic fine particle polymer, (B) an infrared ray absorbing dye, and (C) a polyglycerol compound, in which the infrared ray absorbing dye is an infrared ray absorbing dye expressed by the Formula (I) as defined herein, and the polyglycerol compound is a compound having three or more structural units selected from structural units expressed by the Formulae (1) and (2) as defined herein.