摘要:
A method for manufacturing a device includes providing a substrate, the substrate including a plurality of exposure fields, each exposure field including one or more target portions and at least one mark structure, the mark structure being arranged as positional mark for the exposure field; scanning and measuring the mark of each exposure field to obtain alignment information for the respective exposure field; determining an absolute position of each exposure field from the alignment information for the respective exposure field; determining a relative position of each exposure field with respect to at least one other exposure field by use of additional information on the relative parameters of the exposure field and the at least one other exposure field relative to each other; and combining the absolute positions and the determined relative positions into improved absolute positions for each of the plurality of exposure fields.
摘要:
A method for manufacturing a device includes providing a substrate, the substrate including a plurality of exposure fields, each exposure field including one or more target portions and at least one mark structure, the mark structure being arranged as positional mark for the exposure field; scanning and measuring the mark of each exposure field to obtain alignment information for the respective exposure field; determining an absolute position of each exposure field from the alignment information for the respective exposure field; determining a relative position of each exposure field with respect to at least one other exposure field by use of additional information on the relative parameters of the exposure field and the at least one other exposure field relative to each other; and combining the absolute positions and the determined relative positions into improved absolute positions for each of the plurality of exposure fields.
摘要:
An alignment mark comprising a periodic structure formed by mark lines is described. In an embodiment, the alignment mark is formed in a scribe lane of a substrate, the scribe lane extending in a scribe lane direction. The alignment mark includes: a first area including a first periodic structure formed by first mark lines extending in a first direction, the first direction being at a first angle α with respect to the scribe lane direction: 0°
摘要:
An alignment mark comprising a periodic structure formed by mark lines is described. In an embodiment, the alignment mark is formed in a scribe lane of a substrate, the scribe lane extending in a scribe lane direction. The alignment mark includes: a first area including a first periodic structure formed by first mark lines extending in a first direction, the first direction being at a first angle α with respect to the scribe lane direction: 0°
摘要:
A lithographic apparatus according to one embodiment of the invention includes an alignment system for aligning a substrate or a reticle. The alignment system includes a radiation source configured to illuminate an alignment mark on the substrate or on the reticle, the alignment mark comprising a maximum length sequence or a multi periodic coarse alignment mark. An alignment signal produced from the alignment mark is detected by a detection system. A processor determines an alignment position of the substrate or the reticle based on the alignment signal.
摘要:
A lithographic apparatus according to one embodiment of the invention includes an alignment system for aligning a substrate or a reticle. The alignment system includes a radiation source configured to illuminate an alignment mark on the substrate or on the reticle, the alignment mark comprising a maximum length sequence or a multi periodic coarse alignment mark. An alignment signal produced from the alignment mark is detected by a detection system. A processor determines an alignment position of the substrate or the reticle based on the alignment signal.
摘要:
A method for alignment of a substrate, in which the substrate includes a mark in a scribe lane, and the scribe lane extends along a longitudinal direction as a first direction. The mark has a periodic structure in the first direction. The method includes providing an illumination beam for scanning the mark in a direction perpendicular to a direction of the mark's periodic structure along a first scan path across the mark, scanning the spot of the illumination beam along a second scan path across the mark, the second scan path being parallel to the first scan path, wherein the second scan path is shifted relative to the first scan path over a first shift that corresponds to a fraction of the repeating distance of the periodic structure.
摘要:
A lithographic apparatus according to one embodiment of the invention includes an alignment system for aligning a substrate or a reticle. The alignment system includes a radiation source configured to illuminate an alignment mark on the substrate or on the reticle, the alignment mark comprising a maximum length sequence or a multi periodic coarse alignment mark. An alignment signal produced from the alignment mark is detected by a detection system. A processor determines an alignment position of the substrate or the reticle based on the alignment signal.
摘要:
A method for alignment of a substrate, in which the substrate includes a mark in a scribe lane, and the scribe lane extends along a longitudinal direction as a first direction. The mark has a periodic structure in the first direction. The method includes providing an illumination beam for scanning the mark in a direction perpendicular to a direction of the mark's periodic structure along a first scan path across the mark, scanning the spot of the illumination beam along a second scan path across the mark, the second scan path being parallel to the first scan path, wherein the second scan path is shifted relative to the first scan path over a first shift that corresponds to a fraction of the repeating distance of the periodic structure.
摘要:
A lithographic apparatus according to one embodiment of the invention includes an alignment system for aligning a substrate or a reticle. The alignment system includes a radiation source configured to illuminate an alignment mark on the substrate or on the reticle, the alignment mark comprising a maximum length sequence or a multi periodic coarse alignment mark. An alignment signal produced from the alignment mark is detected by a detection system. A processor determines an alignment position of the substrate or the reticle based on the alignment signal.