摘要:
Semiconductor devices are formed with a silicide interface between the work function layer and polycrystalline silicon. Embodiments include forming a high-k/metal gate stack by: forming a high-k dielectric layer on a substrate, forming a work function metal layer on the high-k dielectric layer, forming a silicide on the work function metal layer, and forming a poly Si layer on the silicide. Embodiments include forming the silicide by: forming a reactive metal layer in situ on the work function layer, forming an a-Si layer in situ on the entire upper surface of the reactive metal layer, and annealing concurrently with forming the poly Si Layer.
摘要:
Semiconductor devices are formed with a silicide interface between the work function layer and polycrystalline silicon. Embodiments include forming a high-k/metal gate stack by: forming a high-k dielectric layer on a substrate, forming a work function metal layer on the high-k dielectric layer, forming a silicide on the work function metal layer, and forming a poly Si layer on the silicide. Embodiments include forming the silicide by: forming a reactive metal layer in situ on the work function layer, forming an a-Si layer in situ on the entire upper surface of the reactive metal layer, and annealing concurrently with forming the poly Si Layer.
摘要:
When forming sophisticated semiconductor devices, a replacement gate approach may be applied in combination with a self-aligned contact regime by forming the self-aligned contacts prior to replacing the placeholder material of the gate electrode structures.
摘要:
Disclosed herein is a method of forming a semiconductor device. In one example, the method includes forming a gate electrode structure above a semiconducting substrate, wherein the gate electrode structure includes a gate insulation layer, a gate electrode, a first sidewall spacer positioned proximate the gate electrode, and a gate cap layer, and forming an etch stop layer above the gate cap layer and above the substrate proximate the gate electrode structure. The method further includes forming a layer of spacer material above the etch stop layer, and performing at least one first planarization process to remove the portion of said layer of spacer material positioned above the gate electrode, the portion of the etch stop layer positioned above the gate electrode and the gate cap layer.
摘要:
Disclosed herein is a method of forming a semiconductor device. In one example, the method includes forming a gate electrode structure above a semiconducting substrate, wherein the gate electrode structure includes a gate insulation layer, a gate electrode, a first sidewall spacer positioned proximate the gate electrode, and a gate cap layer, and forming an etch stop layer above the gate cap layer and above the substrate proximate the gate electrode structure. The method further includes forming a layer of spacer material above the etch stop layer, and performing at least one first planarization process to remove the portion of said layer of spacer material positioned above the gate electrode, the portion of the etch stop layer positioned above the gate electrode and the gate cap layer.
摘要:
An eDRAM is fabricated including high performance logic transistor technology and ultra low leakage DRAM transistor technology. Embodiments include forming a recessed channel in a substrate, forming a first gate oxide to a first thickness lining the channel and a second gate oxide to a second thickness over a portion of an upper surface of the substrate, forming a first polysilicon gate in the recessed channel and overlying the recessed channel, forming a second polysilicon gate on the second gate oxide, forming spacers on opposite sides of each of the first and second polysilicon gates, removing the first and second polysilicon gates forming first and second cavities, forming a high-k dielectric layer on the first and second gate oxides, and forming first and second metal gates in the first and second cavities, respectively.
摘要:
Generally, the present disclosure is directed to a semiconductor device with DRAM bit lines made from the same material as the gate electrodes in non-memory regions of the device, and methods of making the same. One illustrative method disclosed herein comprises forming a semiconductor device including a memory array and a logic region. The method further comprises forming a buried word line in the memory array and, after forming the buried word line, performing a first common process operation to form at least a portion of a conductive gate electrode in the logic region and to form at least a portion of a conductive bit line in the memory array.
摘要:
An eDRAM is fabricated including high performance logic transistor technology and ultra low leakage DRAM transistor technology. Embodiments include forming a recessed channel in a substrate, forming a first gate oxide to a first thickness lining the channel and a second gate oxide to a second thickness over a portion of an upper surface of the substrate, forming a first polysilicon gate in the recessed channel and overlying the recessed channel, forming a second polysilicon gate on the second gate oxide, forming spacers on opposite sides of each of the first and second polysilicon gates, removing the first and second polysilicon gates forming first and second cavities, forming a high-k dielectric layer on the first and second gate oxides, and forming first and second metal gates in the first and second cavities, respectively.
摘要:
When forming sophisticated semiconductor devices including high-k metal gate electrode structures, a raised drain and source configuration may be used for controlling the height upon performing a replacement gate approach, thereby providing superior conditions for forming contact elements and also obtaining a well-controllable reduced gate height.
摘要:
When forming sophisticated semiconductor devices, a replacement gate approach may be applied in combination with a self-aligned contact regime by forming the self-aligned contacts prior to replacing the placeholder material of the gate electrode structures.