摘要:
A magnetometer is described, having a substrate and a magnetic core, the substrate having an excitation coil for generating a magnetic flux in the magnetic core; and the excitation coil having a coil cross section, which is aligned generally perpendicular to a main plane of extension of the substrate. The magnetic core is situated outside the coil cross section.
摘要:
A magnetometer is described, having a substrate and a magnetic core, the substrate having an excitation coil for generating a magnetic flux in the magnetic core; and the excitation coil having a coil cross section, which is aligned generally perpendicular to a main plane of extension of the substrate. The magnetic core is situated outside the coil cross section.
摘要:
A capping technology is provided in which, despite the fact that structures which are surrounded by a silicon-germanium filling layer are exposed using ClF3 etching through micropores in the silicon cap, an etching attack on the silicon cap is prevented, namely, either by particularly selective (approximately 10,000:1 or higher) adjustment of the etching process itself, or by using the finding that the oxide of a germanium-rich layer, in contrast to oxidized porous silicon, is not stable but instead may be easily dissolved, to protect the silicon cap.
摘要:
A capping technology is provided in which, despite the fact that structures which are surrounded by a silicon-germanium filling layer are exposed using ClF3 etching through micropores in the silicon cap, an etching attack on the silicon cap is prevented, namely, either by particularly selective (approximately 10,000:1 or higher) adjustment of the etching process itself, or by using the finding that the oxide of a germanium-rich layer, in contrast to oxidized porous silicon, is not stable but instead may be easily dissolved, to protect the silicon cap.
摘要:
A method of encapsulating a sensor device includes providing at least one sensor device that has a sensor portion on a substrate. An exclusionary zone is formed above an upper surface of the sensor portion. An outer boundary is formed on or about the sensor device with the outer boundary encircling the exclusionary zone. A mold material is deposited into a volume defined in part by the sensor device, the exclusionary zone, and the outer boundary to encapsulate portions of the sensor device. The exclusionary zone in one embodiment is an inner boundary that is formed on the sensor portion. The inner boundary encircles a portion of the upper surface of the sensor portion. The exclusionary zone in another embodiment is a selectively removable material deposited on the upper surface of the sensor portion. The selectively removable material occupies a space above a portion of the upper surface.
摘要:
A Li-ion battery in one embodiment includes a lithium based compound in a cathode, a first porous silicon portion in an anode, and a layer of atomic layer deposited (ALD) alumina coating the first porous silicon portion and contacting the cathode.
摘要:
A Li-ion battery in one embodiment includes a lithium based compound in a cathode, a first porous silicon portion in an anode, and a layer of atomic layer deposited (ALD) alumina coating the first porous silicon portion and contacting the cathode.
摘要:
In one embodiment, a method of opening a passageway to a cavity includes providing a donor portion, forming a heating element adjacent to the donor portion, forming a first sacrificial slab abutting the donor portion, wherein the donor portion and the sacrificial slab are a shrinkable pair, forming a first cavity, a portion of the first cavity bounded by the first sacrificial slab, generating heat with the heating element, forming a first reduced volume slab from the first sacrificial slab using the generated heat and the donor portion, and forming a passageway to the first cavity by forming the first reduced volume slab.
摘要:
A sensor, in particular for the spatially resolved detection, includes a substrate, at least one micropatterned sensor element having an electric characteristic whose value varies as a function of the temperature, and at least one diaphragm above a cavity, the sensor element being disposed on the underside of the at least one diaphragm, and the sensor element being contacted via connecting lines, which extend within, on top of or underneath the diaphragm. In particular, a plurality of sensor elements may be formed as diode pixels within a monocrystalline layer formed by epitaxy. Suspension springs, which accommodate the individual sensor elements in elastic and insulating fashion, may be formed within the diaphragm.
摘要:
A micro-structured reference element for use in a sensor having a substrate and a dielectric membrane. The reference element has an electrical property which changes its value on the basis of temperature. The reference element is arranged with respect to the substrate so that the reference element is (i) electrically insulated from the substrate, and (ii) thermally coupled to the substrate. The reference element is arranged on the underside of the dielectric membrane. The reference element and side walls of the substrate define a circumferential cavern therebetween, which is also bounded by the dielectric membrane, arranged between them. The dielectric membrane is connected to the substrate. A surface area of the reference element which is covered by the dielectric membrane is greater than or equal to 10% and less than or equal to 100% of the possible coverable surface area. A surface of the cavern which is covered by the dielectric membrane is greater than or equal to 50% and less than or equal to 100% of the possible coverable surface. An edge of the reference element which faces the dielectric membrane has greater than or equal to 50% and less than or equal to 100% of its extent contacted by the dielectric membrane. Sections of the side walls of the cavern which face the dielectric membrane have greater than or equal to 50% and less than or equal to 100% of the possible size contacted by the dielectric membrane.