摘要:
The semiconductor device according to the present invention is an nMOS SGT and is composed of a first n+ type silicon layer, a first gate electrode containing metal and a second n+ type silicon layer arranged on the surface of a first columnar silicon layer positioned vertically on a first planar silicon layer. Furthermore, a first insulating film is positioned between the first gate electrode and the first planar silicon layer, and a second insulating film is positioned on the top surface of the first gate electrode. In addition, the first gate electrode containing metal is surrounded by the first n+ type silicon layer, the second n+ type silicon layer, the first insulating film and the second insulating film.
摘要:
The semiconductor device according to the present invention is an nMOS SGT and is composed of a first n+ type silicon layer, a first gate electrode containing metal and a second n+ type silicon layer arranged on the surface of a first columnar silicon layer positioned vertically on a first planar silicon layer. Furthermore, a first insulating film is positioned between the first gate electrode and the first planar silicon layer, and a second insulating film is positioned on the top surface of the first gate electrode. In addition, the first gate electrode containing metal is surrounded by the first n+ type silicon layer, the second n+ type silicon layer, the first insulating film and the second insulating film.
摘要:
The semiconductor device includes: a columnar silicon layer on the planar silicon layer; a first n+ type silicon layer formed in a bottom area of the columnar silicon layer; a second n+ type silicon layer formed in an upper region of the columnar silicon layer; a gate insulating film formed in a perimeter of a channel region between the first and second n+ type silicon layers; a gate electrode formed in a perimeter of the gate insulating film, and having a first metal-silicon compound layer; an insulating film formed between the gate electrode and the planar silicon layer, an insulating film sidewall formed in an upper sidewall of the columnar silicon layer; a second metal-silicon compound layer formed in the planar silicon layer; and an electric contact formed on the second n+ type silicon layer.
摘要:
The semiconductor device includes: a columnar silicon layer on the planar silicon layer; a first n+ type silicon layer formed in a bottom area of the columnar silicon layer; a second n+ type silicon layer formed in an upper region of the columnar silicon layer; a gate insulating film formed in a perimeter of a channel region between the first and second n+ type silicon layers; a gate electrode formed in a perimeter of the gate insulating film, and having a first metal-silicon compound layer; an insulating film formed between the gate electrode and the planar silicon layer, an insulating film sidewall formed in an upper sidewall of the columnar silicon layer; a second metal-silicon compound layer formed in the planar silicon layer; and an electric contact formed on the second n+ type silicon layer.
摘要:
A method for producing a semiconductor device includes preparing a structure having a substrate, a planar semiconductor layer and a columnar semiconductor layer, forming a second drain/source region in the upper part of the columnar semiconductor layer, forming a contact stopper film and a contact interlayer film, and forming a contact layer on the second drain/source region. The step for forming the contact layer includes forming a pattern and etching the contact interlayer film to the contact stopper film using the pattern to form a contact hole for the contact layer and removing the contact stopper film remaining at the bottom of the contact hole by etching. The projection of the bottom surface of the contact hole onto the substrate is within the circumference of the projected profile of the contact stopper film formed on the top and side surface of the columnar semiconductor layer onto the substrate.
摘要:
A method of manufacturing a semiconductor device includes the steps of forming a first columnar semiconductor layer on a substrate forming a first flat semiconductor layer forming a first semiconductor layer of a second conductive type, and forming a first insulating film. The method further includes the steps of forming a gate insulating film and a gate electrode, forming a second semiconductor layer of the second conductive type, forming a semiconductor layer of a first conductive type and forming a metal-semiconductor compound. The first insulating film has a thickness larger than that of the gate insulating film formed around the first columnar silicon layer.
摘要:
A semiconductor device includes a first insulating film formed between a gate electrode and a first flat semiconductor layer, and a sidewall-shaped second insulating film formed to surround an upper sidewall of a first columnar silicon layer while contacting an upper surface of the gate electrode and to surround a sidewall of the gate electrode and the first insulating film. The semiconductor device further includes a metal-semiconductor compound formed on each of an upper surface of a first semiconductor layer of the second conductive type formed in the entirety or the upper portion of the first flat semiconductor layer, and an upper surface of the second semiconductor layer of the second conductive type formed in the upper portion of the first columnar semiconductor layer.
摘要:
This invention provides a method of manufacturing a semiconductor device, which comprises the steps of: forming a first columnar semiconductor layer on a first flat semiconductor layer; forming a first semiconductor layer of a second conductive type in a lower portion of the first columnar semiconductor layer; forming a first insulating film around a lower sidewall of the first columnar silicon layer; forming a gate insulating film and a gate electrode around the first columnar silicon layer; forming a sidewall-shaped second insulating film to surround an upper sidewall of the first columnar silicon layer; forming a semiconductor layer of a first conductive type between the first semiconductor layer of the second conductive type and a second semiconductor layer of the second conductive type; and forming a metal-semiconductor compound on an upper surface of the first semiconductor layer of the second conductive type.
摘要:
It is an object to provide an SGT production method capable of obtaining a structure for reducing a resistance of a gate, a desired gate length, desired source and drain configurations and a desired diameter of a pillar-shaped semiconductor. The object is achieved by a semiconductor device production method which comprises the steps of: forming a pillar-shaped first-conductive-type semiconductor layer; forming a second-conductive-type semiconductor layer underneath the pillar-shaped first-conductive-type semiconductor layer; forming a gate dielectric film and a gate electrode around the pillar-shaped first-conductive-type semiconductor layer; forming a sidewall-shaped dielectric film on an upper region of a sidewall of the pillar-shaped first-conductive-type semiconductor layer and in contact with a top of the gate; forming a sidewall-shaped dielectric film on a sidewall of the gate; and forming a second-conductive-type semiconductor layer in an upper portion of the pillar-shaped first-conductive-type semiconductor layer and on the second-conductive-type semiconductor layer formed underneath the pillar-shaped first-conductive-type semiconductor layer.
摘要:
The method includes the steps of: forming a planar semiconductor layer on an oxide film formed on a substrate and then forming a pillar-shaped first-conductive-type semiconductor layer on the planar semiconductor layer; forming a second-conductive-type semiconductor layer in a portion of the planar semiconductor layer underneath the pillar-shaped first-conductive-type semiconductor layer; forming a gate dielectric film and a gate electrode made of a metal, around the pillar-shaped first-conductive-type semiconductor layer; forming a sidewall-shaped dielectric film on an upper region of a sidewall of the pillar-shaped first-conductive-type semiconductor layer and in contact with a top of the gate electrode; forming a sidewall-shaped dielectric film on a sidewall of the gate electrode; forming a second-conductive-type semiconductor layer in an upper portion of the pillar-shaped first-conductive-type semiconductor layer.