摘要:
A method for preparing low-cost clean steel includes steps of: preliminarily desulfurizing iron melt: preliminarily desulfurizing in an iron melt channel during blast furnace tapping and during iron folding in an iron folding room, adding a desulfurizing ball into the iron melt during the blast furnace tapping or the iron folding; dephosphorizing and controlling sulfur: dephosphorizing and controlling sulfur during converter steelmaking, in such a manner that P≦0.014% and S≦0.004% during tapping; rapidly dephosphorizing by slag-forming: rapidly dephosphorizing by slag-forming during converter tapping, at a converter end point, controlling a C content at 0.02˜0.10%, adding a dephosphorizing ball through an alloy chute during the converter tapping, blowing argon and stirring at the same time; purifying steel melt during RH refining: adding a purifying ball at a late stage of the RH refining when a vacuum degree is at 66.7˜500 Pa; and continuously casting with whole-process protection.
摘要:
A method for preparing low-cost clean steel includes steps of: preliminarily desulfurizing iron melt: preliminarily desulfurizing in an iron melt channel during blast furnace tapping and during iron folding in an iron folding room, adding a desulfurizing ball into the iron melt during the blast furnace tapping or the iron folding; dephosphorizing and controlling sulfur: dephosphorizing and controlling sulfur during converter steelmaking, in such a manner that P≦0.014% and S≦0.004% during tapping; rapidly dephosphorizing by slag-forming: rapidly dephosphorizing by slag-forming during converter tapping, at a converter end point, controlling a C content at 0.02˜0.10%, adding a dephosphorizing ball through an alloy chute during the converter tapping, blowing argon and stirring at the same time; purifying steel melt during RH refining: adding a purifying ball at a late stage of the RH refining when a vacuum degree is at 66.7˜500 Pa; and continuously casting with whole-process protection.
摘要:
A modally driven oscillating element periodically contacts one of more electrical contacts, thereby acting as a switch, otherwise known as a resonant switch, or “resoswitch”, with very high Q's, typically above 10000 in air, and higher in vacuum. Due to periodic constrained contacting of the contacts, the bandwidth of the switch is greatly improved. One or more oscillating elements may be vibrationally interconnected with conductive or nonconductive coupling elements, whereby increased bandwidths of such an overall switching system may be achieved. Using the resoswitch, power amplifiers and converters more closely approaching ideal may be implemented. Integrated circuit fabrication techniques may construct the resoswitch with other integrated CMOS elements for highly compact switching devices. Through introduction of specific geometries within the oscillating elements, displacement gains may be made where modal deflections are greatly increased, thereby reducing device drive voltages to 2.5 V or lower.
摘要:
FIG. 1 is a top perspective view of a generator set showing our new design; FIG. 2 is a bottom perspective view thereof; FIG. 3 is a front elevational view thereof; FIG. 4 is a rear elevational view thereof; FIG. 5 is a left side elevational view thereof; FIG. 6 is a right side elevational view thereof; FIG. 7 is a top plan view thereof; and, FIG. 8 is a bottom plan view thereof. The broken lines in the drawings illustrate the portions of the generator set that form no part of the claimed design.
摘要:
Disclosed are an improved stirring system and its operating method. The disclosed system includes at least two stirrers and a drive for driving the at least two stirrers to move between their stirring position and non-stirring position, the drive driving the stirrers to perform a stirring operation for a single purpose at a time. The system employs a single drive to drive a plurality of stirrers, which effectively avoids the disadvantage of redundantly stirring the reaction solutions in the reaction vessel not necessary to be stirred, reduces the risk of cross contamination caused by the stirrers and affecting the results by abnormal change in the absorbance, and makes the test results more accurate.