Abstract:
There are provided a method of preparing nano-carbon comprising evaporating a material to be arced containing carbon as a main component by means of arc discharge which does not necessarily require a process container and so on, but uses an apparatus having a welding arc torch or an analogous structure to generate soot, a method of preparing an electron emitting source by supporting the soot, and an apparatus for preparing the same. A torch electrode 10 of an arc torch 1 as a first electrode is placed opposite to a material to be arced 2 using graphite as a second electrode. A voltage is applied between the torch electrode 10 and an edge portion of the material to be arced 2 to generate arc discharge, to evaporate the edge portion of the material to be arced 2 exposed to the arc discharge, to generate soot. The soot thus generated is deposited on the surface of a substrate opposite to an arc discharge-generating area through a mask having a patterned opening.
Abstract:
A carbon substance comprises a structure and line-shaped bodies, the structure having a size ranging from about 1 nullm to about 100 nullm and including carbon and a metal or a metallic oxide, and the line-shaped bodies having diameters smaller than about 200 nm and including carbon as a main component thereof and growing radially from a surface of the structure. A method for manufacturing the carbon substance uses a thermal decomposition of a source gas containing carbon in the vicinity of a catalyst, wherein the catalyst comprises a first and a second materials, the first material being Ni or a Ni oxide and the second material being In or an In oxide; and the thermal decomposition is performed at a temperature ranging from about 675null C. to about 750null C. An electron emission element uses the carbon substance as an electron emission material. A composite material includes the carbon substance in its matrix.
Abstract:
A carbon nano-fiber, particularly twisted carbon nano-fiber such as a carbon nano-coil, carbon nano-twist, carbon nano-rope is produced by means of a catalyst CVD method using carbon-containing gas as a raw material and a catalyst comprising one or plural components selected from the group consisting of Cr, Mn, Fe, Co, Ni and oxide thereof and one or plural components selected from the group consisting of Cu, Al, Si, Ti, V, Nb, Mo, Hf, Ta, W and oxide thereof is used.
Abstract:
A method and an apparatus capable of instantaneously forming a surface of an arc-treated material mainly consisting of graphite into nano-tubes due to arc discharge carried out using a unit like a welding arc torch or the like without necessarily requiring a processing container, resulting in the nano-tube being applied to an electron emission source. A torch electrode acting as a first electrode and the arc-treated material made of graphite and acting as a second electrode are arranged opposite to each other. A potential is applied between both electrodes to generate arc discharge therebetween. A mask having an opening pattern is arranged on the arc-treated material, so that only graphite positioned on portions of a surface of the arc-treated material 2 corresponding to openings of the mask are exposed to arc, to thereby be formed into nano-tubes.