摘要:
The invention relates to a device and method for moving an ion source in a magnetic field by making use of the Lorentz force. The ability of the electron source to move makes it possible to extend and retract it simply by switching the operating current on and off. In mass spectrometry, this means that the entrance of a mass spectrometric analyzer is not permanently obstructed but can be made accessible any time for other applications, such as laser beams.
摘要:
The invention relates to a device and a method for the alternating operation of ion sources at mass spectrometers equipped with RF multipole ion guides. Designing at least one of the RF multiple ion guides movable perpendicular to the axis, makes it possible to perform a vacuum-internal source exchange, without having to vent the vacuum system.
摘要:
Fine structures of isotopic peak clusters of substances are determined using ultrahigh resolution mass spectrometry, e.g, FT-ICR mass spectrometry. Resolved individual peaks in the fine structure of the non-monoisotopic peak clusters of organic substances usually contain the additional elemental isotopes 13C, 15N, 17O, 18O, 2H, 33S, 34S, and combinations thereof. In each of a series of experiments, one of the non-monoisotopic peak clusters is isolated and the corresponding fine structure spectrum acquired. Abundances of the resolved fine structure peaks and their positions on the mass scale are recorded and, after measuring some or all of the isotopic peaks, the atomic composition of the measured substance is calculated. By excluding the monoisotopic peak and isolating only one isotopic peak cluster at a time, the number of ions in the FT-ICR cell is kept low, which avoids resolving power losses due to space charge effects and ion-ion interaction phenomena.
摘要:
In an ion cyclotron resonance cell, which is enclosed at its ends by electrode structure elements with DC voltages of alternating polarity, longitudinal electrodes are divided so that the ICR measurement cell between the electrode structure elements consists of at least three sections. An excitation of ion cyclotron motions can be performed by applying additional trapping voltages to longitudinal electrodes located closest to the electrode structure elements and introducing ions into the center set of longitudinal electrodes. The ions are then excited into cyclotron orbits by applying radiofrequency excitation pulses to at least two rows of longitudinal electrodes to produce orbiting ion clouds. Subsequently, the additional trapping voltages are removed and an ion-attracting DC voltage is superimposed on the DC voltages. Ions excited to circular orbits can be detected using detection electrodes in the outer ICR cell sections.
摘要:
An ion cell having an axis includes a sheath of individual electrodes that extends along the axis and defines an internal volume. Adjacent individual electrodes are electrically insulated from each other. The individual electrodes each receive a DC potential and RF voltage. At least some of the individual electrodes have a width that varies in the axial direction such that an electrical effect on an axis potential varies along the axis of the ion cell.
摘要:
The invention relates to a method and a device for controlling the number of ions in ion cyclotron resonance (ICR) mass spectrometers, whereby the ions enter a multipole ion guide after their formation and are stored there temporarily. By measuring the ion number in a predefined subset of these temporarily stored ions, the number of ions transferred into the ICR trap for mass spectrometric analysis is regulated. A mode of operation of the multipole ion guide can ensure that undesirable mass ranges are filtered out before the transfer of ions into the ICR mass spectrometer. The invention makes it possible to eliminate space charge effects, which are caused by overfilling the ICR traps.
摘要:
The compensation potentials on the compensation electrodes of an ICR measuring cell are sequentially adjusted so that an ICR measurement with the longest possible usable image current transient is produced. Then, subsequent ICR measurements are made using the ICR cell with the optimally adjusted compensation potentials. Depending on the kind of ion mixture involved, measurements with image current transients from 10 to more than 20 seconds long can be performed, from which mass spectra with a maximum mass resolution without peak coalescence can be obtained.
摘要:
Ion mobilities are measured by entraining the ions in a gas and adiabatically expanding the ion-containing gas through a nozzle to form a gas jet. An electrical field barrier with variable height is located at the nozzle exit. The field barrier may be located adjacent to the nozzle exit or an ion guide may be located between the nozzle and the field barrier. If a continuous ion current is supplied, the height of the barrier is varied and the ion current of the ions passing over the barrier is measured, the ion current can be differentiated to generate a mobility spectrum. Alternatively, the ions can be temporarily stored in the ion guide so that measurement of the ion current of the ions passing over the barrier results in a direct measurement of the mobility spectrum.
摘要:
Multiply charged ions are trapped and accumulated in a spatially limited region before being injected into an ion trap mass spectrometer such as a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS). In the ion trap electron capture dissociation (ECD) and vibrational excitation dissociation are sequentially applied on ions of the same ion ensemble. The first dissociation process does not fragment all primary ions. Following the detection of the dissociation products, the primary ions that remain undissociated undergo the vibrational excitation and again, a part of them dissociate, and the fragments are detected. Thus, the same ion ensemble is used for two fragmentation processes. During these processes, further ions generated in the external ion source are accumulated in the spatially limited region for subsequent analyses.
摘要:
The present invention relates to a method and a device for irradiating ions in a ion cyclotron resonance (ICR) trap with photons and/or electrons. For electron irradiation a hollow electron emitter is used, through the hole of which a light beam can be sent into the ICR trap. The emitter generates a hollow, tubular electron beam. In a special application low energy ions within the tubular electron beam are irradiated with photons. The ions can be cyclotron-excited mass selectively, by which they enter the electron beam and interact with electrons.