Abstract:
A braking system for a vehicle includes an electric drive system associated with a first set of wheels. The electric drive system is configured to selectively provide electric motive power to the first set of wheels of the vehicle to propel the vehicle and electric retarding to slow the vehicle. The system further includes a friction brake system associated with a second set of wheels of the vehicle, and a controller for selectively actuating the electric drive system to operate in an electric retarding mode and for selectively actuating the friction brake system. The controller is configured to transfer retarding force from the first set of wheels to the second set of wheels, and/or to determine wheel speed signal accuracies, in either case to mitigate vehicle/wheel sliding or slipping.
Abstract:
A control system for a vehicle includes an electric drive system associated with a first set of wheels. The electric drive system is configured to selectively provide electric motive power to the first set of wheels to propel the vehicle and electric retarding to slow the vehicle. The system further includes a friction brake system associated with one of the first set of wheels or a second set of wheels, a drive system control unit, and a friction brake control unit in electrical communication with the drive system control unit. The drive system control unit is configured to communicate with the friction brake control unit to control an amount of friction brake application during vehicle stops and starts on grade.
Abstract:
A torque transmission and sealing assembly includes a ring gear having a first axial end, a second axial end opposite the first axial end, an inner surface including a plurality of teeth and an axial-facing surface at the first axial end, a barrel portion joined to the second axial end of the ring gear, and a plurality of annular, axial extending fingers integrally formed with the ring gear and extending from the axial-facing surface.
Abstract:
A control system for a vehicle includes an electric drive system associated with a first set of wheels (e.g., rear wheels) of a vehicle and a drive system control unit configured to control the electric drive system to selectively provide electric motive power to the first set of wheels to propel the vehicle and electric retarding to slow the vehicle. The system further includes a friction brake system having a first friction brake unit associated with the first set of wheels and a second friction brake unit associated with a second set of wheels (e.g., front wheels) of the vehicle. The drive system control unit is further configured, in at least one mode of operation, to independently control the first and second friction brake units to concurrently apply different levels of friction braking to the first and second sets of wheels, to reduce wear unevenness.
Abstract:
A torque transmission and sealing assembly includes a ring gear having a first axial end, a second axial end opposite the first axial end, an inner surface including a plurality of teeth and an axial-facing surface at the first axial end, a barrel portion joined to the second axial end of the ring gear, and a plurality of annular, axial extending fingers integrally formed with the ring gear and extending from the axial-facing surface.
Abstract:
A control system for a vehicle includes an electric drive system associated with a first set of wheels (e.g., rear wheels) of a vehicle and a drive system control unit configured to control the electric drive system to selectively provide electric motive power to the first set of wheels to propel the vehicle and electric retarding to slow the vehicle. The system further includes a friction brake system having a first friction brake unit associated with the first set of wheels and a second friction brake unit associated with a second set of wheels (e.g., front wheels) of the vehicle. The drive system control unit is further configured, in at least one mode of operation, to independently control the first and second friction brake units to concurrently apply different levels of friction braking to the first and second sets of wheels, to reduce wear unevenness.