Abstract:
A circuit protection method comprises operating a range extender in a normal mode, wherein the range extender comprises at least one DC-to-DC converter having an input side and an output side and at least one bypass device coupled between the input side and the output side. The operating of the range extender in the normal mode comprises converting an input voltage at the input side into an output voltage at the output side by the DC-to-DC converter, wherein the output voltage is higher than a critical voltage. The method further comprises operating the range extender in a safety mode when the output voltage is lower than the critical voltage. The operating of the range extender in the safety mode comprises bypassing the DC-to-DC converter by the bypass device, wherein the critical voltage is lower than or equal to the input voltage.
Abstract:
A power supply system to provide auxiliary power output comprising a first energy storage device, a first inverter coupled to the first energy storage device, a first transformer, a first diode and a capacitor. The first inverter includes a first switch and second switch in series. The first transformer transforms high voltage from the first energy storage device to the low voltage output from auxiliary power output terminal, and includes the primary winding and auxiliary winding. The primary winding is connected to the first energy storage device and the junction of the first and second switch, and the homonymous terminal of the secondary winding is connected to the auxiliary power output through the first diode, with the synonymous terminal connected to the earth. One end of the first capacitor is connected to the first diode cathode and the other end is connected to the earth.
Abstract:
A system includes a contactor system, a vehicle control unit, and a fault diagnostic system. The contactor system includes one or more contactors. The vehicle control unit is coupled to the contactor system via a first connection and a second connection. The vehicle control unit is configured to provide a controlling signal to the contactor system through at least one of the first connection and the second connection to control the one or more contactors. The fault diagnostic system is configured to identify faults occurring in the first connection and the second connection. A method is also provided.
Abstract:
A solid state circuit breaker, including a solid state switch, an inductor connected with the solid state switch in series and a fault detection circuit. The solid state switch has a gate electrode, a source electrode and a drain electrode. The fault detection circuit is used for detecting health status of the solid state switch and identifying fault type of the solid state switch in a condition that a fault occurs on the solid state switch based on one or more of a measured voltage between the source electrode and the drain electrode of the solid state switch, a measured voltage of two terminals of the inductor, a reference voltage and a switching control signal provided to the gate electrode of the solid state switch. A motor driving system having the solid state circuit breaker is further disclosed.
Abstract:
A bridge leg circuit assembly comprising: a circuit board, a first active switch die, and a second active switch die. The circuit board having an insulating plate with a first and second side and a first and second conducting layer on the first and second sides of the insulating plate, respectively. The second conducting layer having a first and second conducting region that are insulated from each other. The first active switch die having an opposing first side, facing and coupled with the first conducting region, and an opposing second side, coupled with the second conducting region, which are embedded into the circuit board. The second active switch die having an opposing first side, coupled with the second conducting region, and an opposing second side, coupled with the first conducting layer, which are embedded into the circuit board.
Abstract:
The present disclosure relates to a charging device for charging a battery back, comprising: a plurality of charging assemblies for charging a plurality of battery cells connected electrically in series in the battery back, wherein the plurality of charging assemblies are configured to charge a first set of the plurality of battery cells in a first time period and a second set of the plurality of battery cells in a second time period, any two of the plurality of battery cells that neighbor with each other are from different sets of the plurality of battery cells, and each of the plurality of charging assemblies comprises: an AC/DC converter for converting an inputted AC voltage to a first DC voltage; and a DC/DC converter for converting the first DC voltage to a second DC voltage for charging the battery cell. The present disclosure further relates to a charging system and method.
Abstract:
A system comprises a first energy system, a range extender, and a controller. The range extender has a second energy system, first and second converters, and a by-pass. The first converter is selectably coupled between the first energy system and an electric load, the second converter is selectably coupled between the second energy system and at least one of an output side of the first converter and an input side of the electric load, and the by-pass is selectably coupled between the first energy system and at least one of the output side of the first converter, an output side of the second converter and the input side of the electric load.
Abstract:
A multi-source energy storage system, it includes a first energy storage system, a second energy storage system, and a second DC/DC converter and controller and a method for supplying power to an electrical load from multiple energy storage systems. The first energy storage system can be coupled to an electrical load. The second DC/DC converter and controller can be coupled between at least one of the following: a second energy storage system and a first energy storage system or electrical load. The controller settings control the first and second energy storage systems and the second DC/DC converter runs in both precharge mode and normal mode. In the precharge mode, the first energy storage system charges the second energy storage system via the second DC/DC converter. In normal mode, the second energy storage is coupled to the electrical load via the second DC/DC converter.
Abstract:
The present invention discloses an apparatus comprising an energy source, a first motor, a second motor and a control system. The first motor is configured to drive a first load and the second motor is configured to drive a second load. The control system is coupled to the energy source, the first and the second motors. The control system dumps the baking power generated by the first load at least partially on the first motor according to a first baking command. The control system dumps the baking power generated by the second load at least partially on the second motor, according to a second baking command. The present invention also discloses other varieties of apparatuses, vehicles, such as electric tractors, electric forklifts and relative methods, etc.