Abstract:
A wind turbine includes multiple blades, multiple Micro Inertial Measurement Units (MIMUs) for sensing parameter signals of the blades, and a control system. The control system includes a blade bending moment calculation unit, a blade bending moment error signal calculation unit, and a pitch angle compensation command calculation unit. The blade bending moment calculation unit is used for calculating blade bending moment values of the blades based at least on the sensed parameters. The blade bending moment error signal calculation unit is used for calculating blade bending moment error signals of the blades based on the calculated blade bending moment values of the blades and multiple blade bending moment commands. The pitch angle compensation command calculation unit is used for calculating pitch angle compensation commands of the blades based on the calculated blade bending moment error signals to adjust pitch angles of the blades respectively.
Abstract:
A wind turbine includes a rotor comprising multiple blades mounted on a hub, MIMUs mounted on each blade for sensing parameter signals thereof, and a control system. The control system includes a wind speed calculation unit, a wind shear calculation unit, a pitch angle compensation command calculation unit, and a pitch control unit. The wind speed calculation unit is used for calculating wind speeds at the blades based at least on the sensed parameter signals. The wind shear calculation unit is used for calculating a characteristic shear exponent based at least on the calculated wind speeds. The pitch angle compensation command calculation unit is used for calculating pitch angle compensation commands of the blades based at least on the calculated characteristic shear exponent. The pitch control unit is used for adjusting the pitch angles of the blades based on the calculated pitch angle compensation commands.
Abstract:
The present invention discloses an apparatus comprising an energy source, a first motor, a second motor and a control system. The first motor is configured to drive a first load and the second motor is configured to drive a second load. The control system is coupled to the energy source, the first and the second motors. The control system dumps the baking power generated by the first load at least partially on the first motor according to a first baking command. The control system dumps the baking power generated by the second load at least partially on the second motor, according to a second baking command. The present invention also discloses other varieties of apparatuses, vehicles, such as electric tractors, electric forklifts and relative methods, etc.
Abstract:
An energy management system comprises a first electricity transformer with one or more first leg circuit(s), a second electricity transformer with one or more second leg circuit(s), and a control device. One or more first leg circuit(s) is (are) coupled to an energy-type supply, and one or more second leg circuit(s) is (are) coupled to a power-type supply. The control device will control the first and second electricity transformers operating under at least one of two conditions when a traction device is under driving mode.
Abstract:
A wind turbine including a plurality of blades, a micro inertial measurement unit installed on each blade and configured to sense a plurality of detection parameter signals at corresponding installation positions, and a monitoring system configured to monitor an operating state of the blades. The monitoring system includes a signal processing unit configured to obtain a processing parameter signal through calculation based on the detection parameter signals, a signal analyzing unit configured to analyze each analysis parameter signal, selected from the plurality of detection parameter signals and the processing parameter signal, to obtain a fault estimation signal, used to estimate whether a corresponding blade works in a fault state, and a fault evaluating unit configured to evaluate, based on a plurality of fault estimation signals, whether a corresponding blade fails or a probability that the corresponding blade fails.
Abstract:
A system includes a contactor system, a vehicle control unit, and a fault diagnostic system. The contactor system includes one or more contactors. The vehicle control unit is coupled to the contactor system via a first connection and a second connection. The vehicle control unit is configured to provide a controlling signal to the contactor system through at least one of the first connection and the second connection to control the one or more contactors. The fault diagnostic system is configured to identify faults occurring in the first connection and the second connection. A method is also provided.
Abstract:
An apparatus includes at least one energy source and a drive system coupled to the at least one energy source. The drive system converts electrical power received from the at least one energy source and provides converted electrical power for driving at least one load. The drive system includes a first converter, a second converter, and a first switch module coupled to outputs of the first and second converters. When the apparatus is operating under a first mode, the first switch module is switched to assume a first state to allow a first output electrical power provided from the first converter and a second output electrical power provided from the second converter to be combined for driving a first load with the combined output electrical power.