Abstract:
A system for coating reinforcing fiber of a composite component is provided, The system includes a frame including at least one contact location for contacting the reinforcing fiber and a movement mechanism including an actuator. The movement mechanism is operably coupled to the frame to induce movement of the reinforcing fiber relative to the frame. Methods are also provided for coating such a fiber.
Abstract:
An oxide dispersion strengthened refractory-based alloy is provided, along with methods of its formation and use. The oxide dispersion strengthened refractory-based alloy may include a refractory-based alloy comprising two or more refractory elements and forming a continuous phase; and a rare earth refractory oxide comprising at least one rare earth element and at least one of the two or more refractory elements. The rare earth refractory oxide forms discrete particles within the continuous phase, and the oxide dispersion strengthened refractory-based alloy comprises 0.1 volume % to 5 volume % of the rare earth refractory oxide.
Abstract:
The present application provides Calcia-Magnesia-Alumina-Silica (CMAS) (or molten silicate) resistant thermal barrier coatings (TBC). The coatings include elongate growth domains of non-equiaxed, randomly arranged overlapping grains or splats. The elongate growth domains include overlapping individual, randomly distributed splats of tough and soft phases. In some embodiments, the elongate growth domains are formed via air plasma spray. In some embodiments, the tough phases are at least partially stabilized zirconia and/or hafnia compositions, and the soft phases are CMAS (or molten silicate) reactive or resistant compositions. Within each elongate growth domain, the mixture of the tough and soft phases act together to limit penetration of CMAS and also provide sufficient domain toughness to minimize cracking forces produced during crystallization of infiltrated CMAS. The soft phases may react with the CMAS and increase its melting point, increase its viscosity, and reduce the destabilization of the tough phases.
Abstract:
An article includes a substrate comprising a precipitate-strengthened alloy and a coating disposed over the substrate. The alloy comprises a) a population of gamma-prime precipitates, the population having a multimodal size distribution with at least one mode corresponding to a size of less than about 100 nanometers; or b) a population of gamma-double-prime precipitates having a median size less than about 300 nanometers. The coating comprises at least two elements, and further comprises a plurality of prior particles. At least a portion of the coating is substantially free of rapid solidification artifacts. Methods for fabricating the article and for processing powder useful for fabricating the article are also provided.
Abstract:
An article includes a substrate comprising a precipitate-strengthened alloy and a coating disposed over the substrate. The alloy comprises a) a population of gamma-prime precipitates, the population having a multimodal size distribution with at least one mode corresponding to a size of less than about 100 nanometers; or b) a population of gamma-double-prime precipitates having a median size less than about 300 nanometers. The coating comprises at least two elements, and further comprises a plurality of prior particles. At least a portion of the coating is substantially free of rapid solidification artifacts. Methods for fabricating the article and for processing powder useful for fabricating the article are also provided.
Abstract:
One aspect of the present invention includes an article. The article includes a substrate and a coating disposed on the substrate, wherein the coating includes a plurality of cermet particles bonded along their prior particle boundaries. The plurality of cermet particles have a median particle size less than about 5 microns and less than 25 percent of the plurality of cermet particles include melted and re-solidified particles. Gate valves are also presented.
Abstract:
A method of coating a surface is provided. The method comprises feeding a feedstock to a thermal spray torch, the feedstock comprising a liquid, disposing the feedstock on a substrate by thermal spray under conditions selected to produce a textured surface comprising a hierarchical structure, wherein the hierarchical structure comprises agglomerations of at least partially melted and solidified particles derived from the feedstock with individual at least partially melted and solidified particles derived from the feedstock disposed on a surface of the agglomerations; and applying a surface energy modification material over the textured surface. An article comprising a component having a coated surface is also provided.
Abstract:
Coated components are provided that include a substrate having a surface; a bondcoat over the surface of the substrate; a thermally grown oxide layer over the bondcoat; and an environmental barrier coating over the thermally grown oxide layer. The bondcoat includes a plurality of core-shell particulates and a plurality of oxide-sintering aid globular phases dispersed within a metalloid-based material matrix. The plurality of core-shell particulates have a shell comprising a metalloid oxide around a core comprising a metalloid-based material. The plurality of oxide-sintering aid globular phases includes a mixture of the metalloid oxide and a sintering aid.
Abstract:
A system and method described herein relate to applying an overlay metal-based coating to a metal-based substrate. An article is provided, which includes a metal-based substrate having an overlay metal-based coating disposed on the substrate at an interface. The interface is configured such that a crack formed within the overlay metal-based coating and approaching the interface has a propagation path that is more energetically favorable along the interface than through the interface and into the metal-based substrate.
Abstract:
The present application provides Calcia-Magnesia-Alumina-Silica (CMAS) (or molten silicate) resistant thermal barrier coatings (IBC). The coatings include elongate growth domains of non-equiaxed, randomly arranged overlapping grains or splats. The elongate growth domains include overlapping individual, randomly distributed splats of tough and soft phases. In some embodiments, the elongate growth domains are formed via air plasma spray. In some embodiments, the tough phases are at least partially stabilized zirconia and/or hafnia compositions, and the soft phases are CMAS (or molten silicate) reactive or resistant compositions. Within each elongate growth domain, the mixture of the tough and soft phases act together to limit penetration of CMAS and also provide sufficient domain toughness to minimize cracking forces produced during crystallization of infiltrated CMAS. The soft phases may react with the CMAS and increase its melting point, increase its viscosity, and reduce the destabilization of the tough phases.