Abstract:
A method of site-specific modification of an endogenous target DNA of a eukaryotic cell is provided. The method includes contacting the endogenous target DNA having an intended modification site with (i) a gene editing system configured to introduce a double strand break in the endogenous target DNA at or near the intended modification site, and (ii) a donor DNA repair template comprising a plurality of tandem repeat sequences. In the method, each of the plurality of tandem repeat sequences comprises an exogenous donor DNA sequence flanked by a donor 5′ flanking sequence and a donor 3′ flanking sequence. The donor 5′ flanking sequence and the donor 3′ flanking sequence are homologous to a continuous DNA sequence on either side of the intended modification site in the endogenous target DNA.
Abstract:
A method is provided herein, wherein the method of capturing a sperm deoxyribo nucleic acid (DNA) in a sample, comprises contacting a lysis solution to the sample comprising at least a sperm cell or a sperm cell lysate to lyse the sperm cell. The sperm cell or sperm cell lysate comprises a protamine-DNA complex. The method further comprises applying at least a protamine-specific antibody to the lysed sperm cell, wherein the protamine-specific antibody binds to the protamine-DNA complex of the lysed sperm cell to form an antibody-protamine-DNA complex. The antibody binding is followed by capturing the antibody-protamine-DNA complex; and isolating and detecting the sperm DNA from the captured antibody-protamine-DNA complex.
Abstract:
A method of drying a biological sample disposed on a substrate is provided. The method comprises providing the substrate comprising a sample loading area and a heat source; activating the heat source for generating heat; heating the substrate at least above 65° C.; and drying the biological sample. A device for storing sample is also provided, wherein the device comprises a substrate for biological sample-storage; and a heating component that generates heat to maintain a temperature of at least above 65° C. The heating component may contain one or more reagents, wherein the reagents generate heat to maintain a temperature of at least above 65° C.
Abstract:
A method is provided herein, the method includes: applying a sample comprising target nucleic acids to a sample application zone of a substrate; and flowing a nucleic acid amplification reaction mixture across a length of the substrate through the sample application zone to amplify the target nucleic acid forming a nucleic acid amplification product; wherein the target nucleic acid having a first molecular weight is substantially immobilized at the sample application zone and wherein the amplification product having a second molecular weight migrates away from the sample application zone. An associated device is also provided.
Abstract:
A method includes providing a biological sample, providing a sample collection device, wherein the sample collection device includes a sample binding surface including a photodegradable polymer configured to bind the biological sample, contacting the biological sample with the sample binding surface of the sample collection device, and irradiating the sample binding surface and the bound biological sample using light emitted from a light source to initiate degradation of the photodegradable polymer of the sample binding surface to cause release of the biological sample.
Abstract:
Provided herein are methods for amplification a target dsDNA that is impregnated within a porous matrix using endonuclease-assisted DNA amplification. The amplicons may be subsequent detected within the porous matrix or may be eluted out of the porous matrix. Methods for extracting a genetic material from a biological sample using endonuclease-assisted DNA amplification within a porous matrix are also provided.
Abstract:
A method includes providing a biological sample, providing a sample collection device, wherein the sample collection device includes a sample binding surface including a photodegradable polymer configured to bind the biological sample, contacting the biological sample with the sample binding surface of the sample collection device, and irradiating the sample binding surface and the bound biological sample using light emitted from a light source to initiate degradation of the photodegradable polymer of the sample binding surface to cause release of the biological sample.
Abstract:
A method of eluting biomolecules, such as nucleic acids from a biological sample by electroelution is provided. An example of a method includes various steps, such as loading the biological sample to a device comprising a housing, at least two conductive redox polymer electrodes operationally coupled to the housing and a biomolecule impermeable layer disposed on at least one of the electrodes. The loading of sample is followed by initiating an electrical connection to generate an electric field strength sufficient to elute biomolecules from the biological sample; and eluting the biomolecules from the biological sample.
Abstract:
A method is provided herein, the method includes: applying a sample comprising target nucleic acids to a sample application zone of a substrate; applying an aqueous buffer to the sample application zone of the substrate to washes away one or more inhibitors present on the sample application zone; and applying an isothermal nucleic acid amplification reaction mixture to the sample application zone to amplify the target nucleic acid to form a nucleic acid amplification product. The target nucleic acid having a first molecular weight is substantially immobilized at the sample application zone and wherein the amplification product having a second molecular weight.
Abstract:
A method of drying a biological sample disposed on a substrate is provided. The method comprises providing the substrate comprising a sample loading area and a heat source; activating the heat source for generating heat; heating the substrate at least above 65° C.; and drying the biological sample. A device for storing sample is also provided, wherein the device comprises a substrate for biological sample-storage; and a heating component that generates heat to maintain a temperature of at least above 65° C. The heating component may contain one or more reagents, wherein the reagents generate heat to maintain a temperature of at least above 65° C.