Abstract:
A system for creating a braze joint within a component. The system includes an environment operable to reach a braze temperature sufficient to melt at least a portion of a braze material. The system also includes a component within the environment, the component including a base having a base surface, a recess depending from the base surface into the base to an inner edge, and a braze material within the recess and forming a cap above the base surface. The braze material fills the recess from the cap to the inner edge. The cap has an exposed braze surface. The system also includes an insulation layer that at least partially covers the exposed braze surface.
Abstract:
A fluoride ion cleaning system is provided. The system includes a retort including an interior sized to receive at least one component therein. The at least one component has a target area defined thereon. The system also includes a gas distribution system. The gas distribution system includes a manifold configured to provide reaction gas within the interior, a flow modulator configured to agitate the reaction gas within the interior, and at least one nozzle in flow communication with the flow modulator. The at least one nozzle is adapted to define an agitated flow of reaction gas at the target area of the at least one component.
Abstract:
A rework press assembly for reworking a dimensionally non-conformant component is provided. The rework press assembly includes a frame, a die coupled to the frame and configured to contact a first portion of the component, and a ram. The ram is coupled to the frame opposite the die with respect to an axis of the rework press assembly and is configured to contact a second portion of the component. The ram and the die define a component cavity therebetween. At least one of the die and the ram has a first length, relative to the axis, in response to the rework press assembly being at a first thermal condition. The at least one of the die and the ram has a second length, relative to the axis, in response to the rework press assembly being at a second thermal condition, and the second length is greater than the first length.
Abstract:
A modified alloy is disclosed including a base alloy composition and an additive gamma prime antioxidant. The base alloy composition includes a concentration of a gamma prime antioxidant less than an effective concentration of the gamma prime antioxidant. The additive gamma prime antioxidant is intermixed with the base alloy composition to form the modified alloy, preferentially segregating to a gamma prime phase of the modified alloy and increasing the concentration of the gamma prime antioxidant to be at least the effective concentration of the gamma prime antioxidant. The effective concentration imparts reduced oxidation susceptibility of the gamma prime phase. An article is disclosed including the modified alloy. A coated article is disclosed including a coating disposed on a surface of an article having the base alloy composition. The coated article includes a reduced stress accelerated gamma prime oxidation static crack growth susceptibility in comparison with the base alloy composition.
Abstract:
A grain starter for use in solidification of molten metallic material forming an article having a directional grain structure and a method for solidifying an article having a directional grain structure with a substantial absence of stray grains. The grain starter comprises a grain-starting material that initiates grain growth in the molten metallic material in a preselected crystallographic direction. The grain-starting material has a melting temperature higher than the metallic material forming the article lest the grain starter be modified by contact with the molten material. The grain starter further includes a feature that modifies heat transfer characteristics of the metallic material in contact with it in order to produce an article having grains oriented in the preselected crystallographic orientation and modifies the profile of the advancing solidification front. The article is substantially free of stray grains not oriented in the preselected crystallographic direction.
Abstract:
A system for creating a braze joint within a component. The system includes an environment operable to reach a braze temperature sufficient to melt at least a portion of a braze material. The system also includes a component within the environment, the component including a base having a base surface, a recess depending from the base surface into the base to an inner edge, and a braze material within the recess and forming a cap above the base surface. The braze material fills the recess from the cap to the inner edge. The cap has an exposed braze surface. The system also includes an insulation layer that at least partially covers the exposed braze surface.
Abstract:
A nickel alloy for direct metal laser melting is disclosed. The alloy comprising includes a powder that contains about 1.6 to about 2.8 weight percent aluminum, about 2.2 to about 2.4 weight percent titanium, about 1.25 to about 2.05 weight percent niobium, about 22.2 to about 22.8 weight percent chromium, about 8.5 to about 19.5 weight percent cobalt, about 1.8 to about 2.2 weight percent tungsten, about 0.07 to about 0.1 weight percent carbon, about 0.002 to about 0.015 weight percent boron, and about 40 to about 70 weight percent nickel. Related processes and articles are also disclosed.
Abstract:
Systems and methods for identifying and mitigating gas turbine component misalignment using virtual simulation are disclosed herein. An example method may include capturing data associated with a first nozzle segment and a second nozzle segment of a gas turbine. The method may also include creating, based on the captured data, a virtual representation of the first nozzle segment and the second nozzle segment. The method may also include determining that a misalignment exists in a connection between the virtual representation first nozzle segment and the virtual representation of the second nozzle segment. The method may also include identifying, based on the determination that the misalignment exists, a third nozzle segment. The method may also include determining that a connection between a third nozzle segment and the first nozzle segment includes a smaller misalignment.
Abstract:
A system for creating a braze joint within a component. The system includes an environment operable to reach a braze temperature sufficient to melt at least a portion of a braze material. The system also includes a component within the environment, the component including a base having a base surface, a recess depending from the base surface into the base to an inner edge, and a braze material within the recess and forming a cap above the base surface. The braze material fills the recess from the cap to the inner edge. The cap has an exposed braze surface. The system also includes an insulation layer that at least partially covers the exposed braze surface.
Abstract:
A process for forming a diffusion coating on a substrate is disclosed, including preparing a slurry including a donor metal powder, an activator powder, and a binder, and applying the slurry to the substrate. The slurry is dried on the substrate, forming a slurry layer on the substrate. A covering composition is applied over the slurry layer, and the covering composition is dried, forming at least one covering layer enclosing the slurry layer against the substrate. The slurry layer and the at least one covering layer are heated to form the diffusion coating on the substrate, the diffusion coating including an additive layer and an interdiffusion zone disposed between the substrate and the additive layer.