Abstract:
An extreme ultraviolet light generation apparatus may include: a chamber including a plasma generation region to which a target is supplied, the target being turned into plasma so that extreme ultraviolet light is generated in the chamber; a target supply part configured to supply the target to the plasma generation region by outputting the target as a droplet into the chamber; a droplet detector configured to detect the droplet traveling from the target supply part to the plasma generation region; an imaging part configured to capture an image of an imaging region containing the plasma generation region in the chamber; and a controller configured to control an imaging timing at which the imaging part captures the image of the imaging region, based on a detection timing at which the droplet detector detects the droplet.
Abstract:
In an extreme ultraviolet light generation apparatus, a target detection section may include a light source, a transfer optical system, an image sensor configured to output image data of an image that has been formed by irradiating a target outputted from a target supply device with light outputted from the light source on a light-receiving unit of the image sensor by the transfer optical system, and a processing unit, connected to the image sensor, configured to receive the image data, obtain a first optical intensity distribution along a first line that intersects with a trajectory of the target and a second optical intensity distribution along a second line that intersects with the trajectory, calculate a center of gravity position in the first optical intensity distribution and a center of gravity position in the second optical intensity distribution, and calculate an actual path of the target based on the calculated positions.
Abstract:
Output timing of laser light is controlled with high accuracy. An extreme ultraviolet light generation device may include a chamber in which plasma is generated to generate extreme ultraviolet light, a window provided in the chamber, an optical path pipe connected to the chamber, a light source disposed in the optical path pipe and configured to output light into the chamber via the window, a gas supply unit configured to supply gas into the optical path pipe, and an exhaust port configured to discharge the gas in the optical path pipe to an outside of the optical path pipe.
Abstract:
A beam adjusting apparatus of an extreme ultraviolet light generating apparatus may include: a first pair of mirrors constituted by a first concave mirror and a first convex mirror, provided along the optical path of the pulsed laser beam; a second pair of mirrors constituted by a second concave mirror and a second convex mirror, which are arranged in an order reversed from the order of arrangement of the first concave mirror and the first convex mirror, provided along the optical path of the pulsed laser beam downstream from the first pair of mirrors; and a moving apparatus configured to simultaneously increase or simultaneously decrease the distance between the first concave mirror and the first convex mirror and the distance between the second concave mirror and the second convex mirror.
Abstract:
The transmission system may include: an optical path adjustment device configured to substantially unify optical paths of a first pre-pulse laser beam and a second pre-pulse laser beam; an optical path separation device configured to separate the optical paths of the substantially unified first pre-pulse laser beam and the second pre-pulse laser beam to an optical path for the first pre-pulse laser beam and an optical path for the second pre-pulse laser beam; a first beam adjustment device disposed on the optical path for the first pre-pulse laser beam separated by the optical path separation device and configured to adjust a beam parameter of the first pre-pulse laser beam; and a second beam adjustment device disposed on the optical path for the second pre-pulse laser beam separated by the optical path separation device and configured to adjust a beam parameter of the second pre-pulse laser beam.
Abstract:
There may be included: a master oscillator configured to output pulsed laser light; a power amplifier disposed in an optical path of the pulsed laser light to amplify the pulsed laser light; and a wavelength filter disposed between the master oscillator and the power amplifier in the optical path of the pulsed laser light, and configured to allow the pulsed laser light to pass therethrough and suppress transmission of light with a wavelength other than a wavelength of the pulsed laser light.
Abstract:
An extreme ultraviolet light generation device includes: a target supply unit outputting a plurality of targets along a trajectory toward a plasma generation region; a laser device emitting laser light toward the plasma generation region; an image capturing unit having an image capturing direction non-orthogonal and non-parallel to the trajectory, capturing an image of a region including the plasma generation region, and outputting image data; an illumination unit outputting illumination light to the region including the plasma generation region; an image capturing position change unit changing an image capturing position of the image capturing unit along the image capturing direction; a movement amount determination unit determining an movement amount of the image capturing position based on the image data; and a control unit controlling the image capturing position change unit based on the movement amount determined by the movement amount determination unit.
Abstract:
A target sensor may include: a plurality of sensor elements, each of the plurality of sensor elements being configured to output a sensor signal that varies in accordance with an amount of light received on a light-receiving surface; and a signal generator configured to process the sensor signals from the plurality of sensor elements. The light-receiving surfaces of the plurality of sensor elements may be disposed at different positions in a second direction different from a first direction along which an image of the target illuminated by the illumination light may move. The signal generator may be configured to compare each of the sensor signals from the plurality of sensor elements with a threshold and output the signal indicating detection of a target to the controller in a case where at least one of the sensor signals from the plurality of sensor elements may exceed the threshold.
Abstract:
An extreme ultraviolet light generation apparatus may include: a chamber including a plasma generation region to which a target is supplied, the target being turned into plasma so that extreme ultraviolet light is generated in the chamber; a target supply part configured to supply the target to the plasma generation region by outputting the target as a droplet into the chamber; a droplet detector configured to detect the droplet traveling from the target supply part to the plasma generation region; an imaging part configured to capture an image of an imaging region containing the plasma generation region in the chamber; and a controller configured to control an imaging timing at which the imaging part captures the image of the imaging region, based on a detection timing at which the droplet detector detects the droplet.
Abstract:
The extreme ultraviolet light generating apparatus may include a chamber having a window through which a pulse laser beam enters, a target supply unit configured to output at least one target toward a predetermined region in the chamber, a target image capturing device configured to capture an image of the at least one target, a first actuator configured to move a focused area focused by the target image capturing device, and a controller configured to control the first actuator based on a signal from an external device.