Abstract:
Integrated circuits with close electrical contacts and methods for fabricating such integrated circuits are provided. The method includes forming a first and a second contact in an interlayer dielectric, and forming a recess between the first and second contact. A etch mask is formed overlying the interlayer dielectric, and the etch mask is removed from over a recess mid-point. A center contact is formed in the interlayer dielectric at the recess mid-point.
Abstract:
The present disclosure provides a method of forming a semiconductor device, including a shaping of a gate structure of the semiconductor device such that a spacer removal after silicide formation is avoided and silicide overhang is suppressed. In some aspects of the present disclosure, a method of forming a semiconductor device is provided wherein a gate structure is provided over an active region of a semiconductor substrate, the gate structure including a gate electrode material and sidewall spacers. At least one of the gate electrode material and the sidewall spacers are shaped by applying a shaping process to the gate structure and a silicide portion is formed on the shaped gate structure.
Abstract:
Integrated circuits with close electrical contacts and methods for fabricating such integrated circuits are provided. The method includes forming a first and a second contact in an interlayer dielectric, and forming a recess between the first and second contact. A etch mask is formed overlying the interlayer dielectric, and the etch mask is removed from over a recess mid-point. A center contact is formed in the interlayer dielectric at the recess mid-point.
Abstract:
The present disclosure provides a method of forming a semiconductor device, including a shaping of a gate structure of the semiconductor device such that a spacer removal after silicide formation is avoided and silicide overhang is suppressed. In some aspects of the present disclosure, a method of forming a semiconductor device is provided wherein a gate structure is provided over an active region of a semiconductor substrate, the gate structure including a gate electrode material and sidewall spacers. At least one of the gate electrode material and the sidewall spacers are shaped by applying a shaping process to the gate structure and a silicide portion is formed on the shaped gate structure.
Abstract:
A method of reducing the impact of FEoL topography on dual stress liner depositions and the resulting device are disclosed. Embodiments include forming a first nitride layer between and over a pFET and an nFET; thinning the first nitride layer; forming a second nitride layer over the first nitride layer; and removing the first and the second nitride layers from over the pFET.