Abstract:
Integrated circuits with close electrical contacts and methods for fabricating such integrated circuits are provided. The method includes forming a first and a second contact in an interlayer dielectric, and forming a recess between the first and second contact. A etch mask is formed overlying the interlayer dielectric, and the etch mask is removed from over a recess mid-point. A center contact is formed in the interlayer dielectric at the recess mid-point.
Abstract:
When forming semiconductor devices with contact plugs comprising protection layers formed on sidewalls of etch stop layers to reduce the risk of shorts, the protection layers may be formed by performing a sputter process to remove material from a contact region and redeposit the removed material on the sidewalls of the etch stop layers.
Abstract:
The present disclosure provides a method of forming a semiconductor device, including a shaping of a gate structure of the semiconductor device such that a spacer removal after silicide formation is avoided and silicide overhang is suppressed. In some aspects of the present disclosure, a method of forming a semiconductor device is provided wherein a gate structure is provided over an active region of a semiconductor substrate, the gate structure including a gate electrode material and sidewall spacers. At least one of the gate electrode material and the sidewall spacers are shaped by applying a shaping process to the gate structure and a silicide portion is formed on the shaped gate structure.
Abstract:
Integrated circuits with close electrical contacts and methods for fabricating such integrated circuits are provided. The method includes forming a first and a second contact in an interlayer dielectric, and forming a recess between the first and second contact. A etch mask is formed overlying the interlayer dielectric, and the etch mask is removed from over a recess mid-point. A center contact is formed in the interlayer dielectric at the recess mid-point.
Abstract:
Integrated circuits with strained silicon and methods for fabricating such integrated circuits are provided. An integrated circuit includes a stack with a surface layer, an intermediate layer, and a base layer, where the surface layer overlies the intermediate layer, and the intermediate layer overlies the base layer. The surface layer and the base layer include strained silicon, where the silicon atoms are stretched beyond a normal crystalline silicon interatomic distance. The intermediate layer includes crystalline silicon germanium.
Abstract:
The present disclosure provides a method of forming a semiconductor device, including a shaping of a gate structure of the semiconductor device such that a spacer removal after silicide formation is avoided and silicide overhang is suppressed. In some aspects of the present disclosure, a method of forming a semiconductor device is provided wherein a gate structure is provided over an active region of a semiconductor substrate, the gate structure including a gate electrode material and sidewall spacers. At least one of the gate electrode material and the sidewall spacers are shaped by applying a shaping process to the gate structure and a silicide portion is formed on the shaped gate structure.
Abstract:
A semiconductor device includes a silicide contact region positioned at least partially in a semiconductor layer, an etch stop layer positioned above the semiconductor layer, and a dielectric layer positioned above the etch stop layer. A contact structure that includes a conductive contact material extends through at least a portion of the dielectric layer and through an entirety of the etch stop layer to the silicide contact region, and a silicide protection layer is positioned between sidewalls of the etch stop layer and sidewalls of the contact structure.
Abstract:
A semiconductor device includes a silicide contact region positioned at least partially in a semiconductor layer, an etch stop layer positioned above the semiconductor layer, and a dielectric layer positioned above the etch stop layer. A contact structure that includes a conductive contact material extends through at least a portion of the dielectric layer and through an entirety of the etch stop layer to the silicide contact region, and a silicide protection layer is positioned between sidewalls of the etch stop layer and sidewalls of the contact structure.
Abstract:
A method of reducing the impact of FEoL topography on dual stress liner depositions and the resulting device are disclosed. Embodiments include forming a first nitride layer between and over a pFET and an nFET; thinning the first nitride layer; forming a second nitride layer over the first nitride layer; and removing the first and the second nitride layers from over the pFET.
Abstract:
In sophisticated semiconductor devices, an efficient stress decoupling may be accomplished between neighboring transistor elements of a densely packed device region by providing a gap or a stress decoupling region between the corresponding transistors. For example, a gap may be formed in the stress-inducing material so as to reduce the mutual interaction of the stress-inducing material on the closely spaced transistor elements. In some illustrative aspects, the stress-inducing material may be provided as an island for each individual transistor element.