Abstract:
A silicon-containing antireflective coating formulation comprising: (i) an aqueous base insoluble organosilicon component having a multiplicity of hydrocarbon groups derivatized with hydroxy groups in the absence of Si—O—C and Si—O—H moieties; (ii) a vinylether component having a multiplicity of vinylether groups; and (iii) a casting solvent. Also disclosed is a method for converting the silicon-containing antireflective coating formulation into a crosslinked silicon-containing antireflective film comprising organosilicon units interconnected by acetal or ketal groups. The method entails (a) coating a substrate with the silicon-containing antireflective coating formulation and (b) heating the coated substrate to a temperature at which crosslinking between the organosilicon silicon component and vinylether component occurs. Further disclosed is a method for patterning an antireflective coating on a substrate using the crosslinked silicon-containing antireflective film in a lithographic patterning process wherein the crosslinked silicon-containing antireflective film is situated between the substrate and a photoresist.
Abstract:
A curable liquid formulation comprising: (i) one or more near-infrared absorbing polymethine dyes; (ii) one or more crosslinkable polymers; and (iii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
Abstract:
A method of testing the cleanability of polymerized sublimate outgassed from a lithography material during a thermal heating process including; placing a wafer on a wafer hotplate inside a chamber with the wafer being covered by a lithography material; placing a target, having a starting composition, above the wafer in the chamber; heating the wafer using the wafer hotplate in an attempt to outgas a sublimate, where the sublimate condenses on the target; forming a polymerized sublimate on the target; and applying organic solvents to the target to determine the cleanability of the polymerized sublimate.
Abstract:
An silicon-containing antireflective coating (SiARC) material is applied on a substrate. The SiARC material which includes a base polymer and may include a boron silicate polymer including silsesquioxane. An etch sequence is utilized, which includes a first wet etch employing a basic solution, a second wet etch employing an acidic solution, and a third wet etch employing another basic solution. The first wet etch can be employed to break up the boron silicate polymer, and the second wet etch can remove the base polymer material, and the third wet etch can remove the residual boron silicate polymer and other residual materials. The SiARC material can be removed from a substrate employing the etch sequence, and the substrate can be reused for monitoring purposes.