Abstract:
A self-aligned quadruple patterning (SAQP) process for forming semiconductor devices utilizes a look-up table based on lithography and etch profiles to improve the critical dimension(s) of semiconductor structures such as semiconductor fins. The look-up table may include lithography and etch data, including critical dimension (CD) and sidewall angle (SWA) data for intermediate as well as final structures formed during fabrication, and may be used to improve fin CD and fin pitch in device architectures that include densely-arrayed, semi-densely arrayed and nested structures.
Abstract:
Methods and transistors for circuit structures are provided. The methods include, for instance: defining a channel region in a substrate, the channel region having at least one channel region sidewall adjoining an isolation material; recessing the isolation material to expose an upper portion of the at least one channel region sidewall; and providing a gate structure over a gate interface area with the channel region. The gate interface area includes at least the upper portion of the at least one channel region sidewall and an upper surface of the channel region so that a threshold voltage of the gate structure may be reduced. The methods may also include etching an elongate notch in the upper portion of the at least one channel region sidewall to increase a size of the gate interface area and further reduce the threshold voltage of the gate structure.
Abstract:
One illustrative IC product disclosed herein includes a first conductive line positioned at a first level within the IC product and a first conductive structure positioned at a second level within the IC product, wherein the second level is lower than the first level. In this illustrative example, the IC product also includes a second conductive structure that is conductively coupled to the first conductive line, wherein at least a portion of the second conductive structure is positioned at a level that is above the first level and wherein nearest surfaces of the first conductive structure and the second conductive structure are laterally offset from one another by a lateral distance and insulating material positioned between the nearest surfaces of the first conductive structure and the second conductive structure.
Abstract:
A method of making a transistor for an integrated circuit includes providing a substrate and forming a dummy gate for the transistor within a gate trench on the substrate. The gate trench includes sidewalls, a trench bottom, and a trench centerline extending normally from a center portion of the trench bottom. The dummy gate is removed from the gate trench. A gate dielectric layer is disposed within the gate trench. A gate work-function metal layer is disposed over the gate dielectric layer, the work-function metal layer including a pair of corner regions proximate the trench bottom. An angled implantation process is utilized to implant a work-function tuning species into the corner regions at a tilt angle relative to the trench centerline, the tilt angle being greater than zero.
Abstract:
Methods for preparing CMOS transistors having longer effective gate lengths and the resulting devices are disclosed. Embodiments include forming a dummy gate bound by spacers on opposing sides thereof, on a substrate; removing the dummy gate to form a trench between the spacers; modifying a gate channel portion of the substrate between the spacers to form inner or outer sidewalls; depositing a conformal high-k dielectric layer on the modified gate channel portion; and forming a metal gate in the trench.