Abstract:
Fabrication methods and structure include: providing a wafer with at least one fin extended above a substrate in a first region, and at least one fin extended above the substrate in a second region of the wafer; forming a gate structure extending at least partially over the at least one fin to define a semiconductor device region in the first region; implanting a dopant into the at least one fin in the first region and into the at least one fin in the second region of the wafer, where the implanting of the dopant into the at least one fin of the second region modulates a physical property of the at least one fin to define a resistor device region in the second region; and disposing a conductive material at least partially over the at least one fin in the first region and over the at least one fin in the second region of the wafer, in part, to form a source and drain contact in the first region, and a fin-type metal-semiconductor resistor in the second region.
Abstract:
Standard High-K metal gate (HKMG) CMOS technologies fabricated using the replacement metal gate (RMG), also known as gate-last, integration flow, are susceptible to oxygen ingress into the high-K gate dielectric layer and oxygen diffusion into the gate dielectric and semiconductor channel region. The oxygen at the gate dielectric and semiconductor channel interface induces unwanted oxide regrowth that results in an effective oxide thickness increase, and transistor threshold voltage shifts, both of which are highly variable and degrade semiconductor chip performance. By introducing silicon nitride deposited at low temperature, after the metal gate formation, the oxygen ingress and gate dielectric regrowth can be avoided, and a high semiconductor chip performance is maintained.