Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to metal insulator metal capacitor devices and methods of manufacture. The method includes: depositing a bottom plate; depositing a dielectric film over the bottom plate; exposing the dielectric film to a gas; curing the dielectric film; and depositing a top plate over the dielectric film.
Abstract:
The source/drain of a fully III-V semiconductor or Si-based transistor includes a bottom barrier layer that may be lattice matched to the channel, a lower layer of a wide bandgap III-V material and a top layer of a comparatively narrow bandgap III-V material, with a compositionally graded layer between the lower layer and top layer gradually transitioning from the wide bandgap material to the narrow bandgap material.
Abstract:
A layer of ferroelectric material is incorporated into the gate contact of a metal oxide semiconductor field effect transistor (MOSFET), i.e., outside of the device active area. Flexibility in the deposition and patterning of the ferroelectric layer geometry allows for efficient matching between the capacitance of the ferroelectric layer and the capacitance of the gate, providing a step-up voltage transformer, decreased threshold voltage, and a sub-threshold swing for the device of less than 60 mV/decade.