Abstract:
Methods for forming CMOS integrated circuit structures are provided, the methods comprising performing a first implantation process for performing at least one of a halo implantation and a source and drain extension implantation into a region of a semiconductor substrate and then forming a stressor region in another region of the semiconductor substrate. Furthermore, a semiconductor device structure is provided, the structure comprising a stressor region embedded into a semiconductor substrate adjacent to a gate structure, the embedded stressor region having a surface differing along a normal direction of the surface from an interface by less than about 8 nm, wherein the interface is formed between the gate structure and the substrate.
Abstract:
E-fuses are used in integrated circuits in order to permit real-time dynamic reprogramming of the circuit after manufacturing. An e-fuse is hereby proposed wherein the metal element adapted to be blown upon passage of a current is not comprised of a silicide layer but is rather a metal layer above which a semiconductor layer is formed. A dielectric layer is then formed on the semiconductor layer, in order to prevent metal silicide from forming over the metal layer. The process of manufacturing the e-fuse can be easily integrated in an HKMG manufacturing flow. In particular, fully silicided metal gates may be manufactured in conjunction with the e-fuse, without jeopardizing the correct functioning of the e-fuse.
Abstract:
A semiconductor device includes a first transistor positioned in and above a first semiconductor region, the first semiconductor region having a first upper surface and including a first semiconductor material. The semiconductor device further includes first raised drain and source portions positioned on the first upper surface of the first semiconductor region, the first drain and source portions including a second semiconductor material having a different material composition from the first semiconductor material. Additionally, the semiconductor device includes a second transistor positioned in and above a second semiconductor region, the second semiconductor region including the first semiconductor material. Finally, the semiconductor device also includes strain-inducing regions embedded in the second semiconductor region, the embedded strain-inducing regions including the second semiconductor material.
Abstract:
When forming field effect transistors, a common problem is the formation of a Schottky barrier at the interface between a metal thin film in the gate electrode and a semiconductor material, typically polysilicon, formed thereupon. Fully silicided gates are known in the state of the art which may overcome this problem. The claimed method proposes an improved fully silicided gate achieved by forming a gate structure including an additional metal layer between the metal gate layer and the gate semiconductor material. A silicidation process can then be optimized so as to form a lower metal silicide layer comprising the metal of the additional metal layer and an upper metal silicide layer forming an interface with the lower metal silicide layer.
Abstract:
A semiconductor device includes a first transistor positioned in and above a first semiconductor region, the first semiconductor region having a first upper surface and including a first semiconductor material. The semiconductor device further includes first raised drain and source portions positioned on the first upper surface of the first semiconductor region, the first drain and source portions including a second semiconductor material having a different material composition from the first semiconductor material. Additionally, the semiconductor device includes a second transistor positioned in and above a second semiconductor region, the second semiconductor region including the first semiconductor material. Finally, the semiconductor device also includes strain-inducing regions embedded in the second semiconductor region, the embedded strain-inducing regions including the second semiconductor material.
Abstract:
E-fuses are used in integrated circuits in order to permit real-time dynamic reprogramming of the circuit after manufacturing. An e-fuse is hereby proposed wherein the metal element adapted to be blown upon passage of a current is not comprised of a silicide layer but is rather a metal layer above which a semiconductor layer is formed. A dielectric layer is then formed on the semiconductor layer, in order to prevent metal silicide from forming over the metal layer. The process of manufacturing the e-fuse can be easily integrated in an HKMG manufacturing flow. In particular, fully silicided metal gates may be manufactured in conjunction with the e-fuse, without jeopardizing the correct functioning of the e-fuse.
Abstract:
When forming field effect transistors according to the gate-first HKMG approach, the cap layer formed on top of the gate electrode had to be removed before the silicidation step, resulting in formation of a metal silicide layer on the surface of the gate electrode and of the source and drain regions of the transistor. The present disclosure improves the manufacturing flow by skipping the gate cap removal process. Metal silicide is only formed on the source and drain regions. The gate electrode is then contacted by forming an aperture through the gate material, leaving the surface of the gate metal layer exposed.
Abstract:
When forming field effect transistors, a common problem is the formation of a Schottky barrier at the interface between a metal thin film in the gate electrode and a semiconductor material, typically polysilicon, formed thereupon. Fully silicided gates are known in the state of the art which may overcome this problem. The claimed method proposes an improved fully silicided gate achieved by forming a gate structure including an additional metal layer between the metal gate layer and the gate semiconductor material. A silicidation process can then be optimized so as to form a lower metal silicide layer comprising the metal of the additional metal layer and an upper metal silicide layer forming an interface with the lower metal silicide layer.
Abstract:
When forming field effect transistors according to the gate-first HKMG approach, the cap layer formed on top of the gate electrode had to be removed before the silicidation step, resulting in formation of a metal silicide layer on the surface of the gate electrode and of the source and drain regions of the transistor. The present disclosure improves the manufacturing flow by skipping the gate cap removal process. Metal silicide is only formed on the source and drain regions. The gate electrode is then contacted by forming an aperture through the gate material, leaving the surface of the gate metal layer exposed.
Abstract:
A method for performing silicidation of a gate electrode is provided that includes forming both a first transistor with a first gate electrode covered by a cap layer and a semiconductor device on the same semiconductor substrate, forming an organic planarization layer (OPL) on the first transistor and the semiconductor device, back etching the OPL such that an upper surface of the OPL is positioned at a level that is below a level of an upper surface of the cap layer, forming a mask layer covering the semiconductor device without covering the first transistor, removing the cap layer while the back-etched OPL and the mask layer are present, and performing silicidation of the first gate electrode.