摘要:
Methods of forming a contact for a semiconductor device with double barrier layer sets, and a device so formed are disclosed. Methods may include: depositing a first metal layer contacting a semiconductor substrate in a contact opening; depositing a first nitride barrier layer on the first metal layer; and annealing after depositing the first nitride barrier layer to form silicide region in a junction area underlying the contact opening with the first metal layer and the semiconductor substrate. After the annealing, a second metal layer may be deposited, followed by a second nitride barrier layer. A conductor is formed in a remaining portion of the contact opening. The double barrier layer sets prevent the formation of volcano defects and also advantageously reduce contact resistance.
摘要:
Methods of forming a contact for a semiconductor device with double barrier layer sets, and a device so formed are disclosed. Methods may include: depositing a first metal layer contacting a semiconductor substrate in a contact opening; depositing a first nitride barrier layer on the first metal layer; and annealing after depositing the first nitride barrier layer to form silicide region in a junction area underlying the contact opening with the first metal layer and the semiconductor substrate. After the annealing, a second metal layer may be deposited, followed by a second nitride barrier layer. A conductor is formed in a remaining portion of the contact opening. The double barrier layer sets prevent the formation of volcano defects and also advantageously reduce contact resistance.
摘要:
P-type metal-oxide semiconductor field-effect transistors (pMOSFET's), semiconductor devices comprising the pMOSFET's, and methods of forming pMOSFET's are provided. The pMOSFET's include a silicon-germanium (SiGe) film that has a lower interface in contact with a semiconductor substrate and an upper surface, and the SiGe film has a graded boron doping profile where boron content increases upwardly over a majority of the width of boron-doped SiGe film between the lower interface of the SiGe film and the upper surface of the SiGe film. Methods of forming the pMOSFET's include: providing a semiconductor substrate; depositing a SiGe film on the semiconductor substrate, thereby forming a lower interface of the SiGe film in contact with the semiconductor substrate, and an upper surface of the SiGe film; and doping the SiGe film with boron to form a SiGe film having a graded boron doping profile where boron content increases upwardly over a majority of the width of boron-doped SiGe film between the lower interface of the SiGe film and the upper surface of the SiGe film.
摘要:
Approaches for providing a fin field effect transistor device (FinFET) with a planar block area to enable variable fin pitch and width are disclosed. Specifically, approaches are provided for forming a plurality of fins patterned from a substrate, the plurality of fins comprising: a first set of fins having a variable pitch and a variable width; and a second set of fins having a variable pitch and a uniform width, wherein the first set of fins is adjacent the second set of fins. In one approach, the first set of fins is patterned from the planar block area, which is formed over the substrate, and the second set of fins is formed using a sidewall image transfer (SIT) process.
摘要:
The present disclosure relates to semiconductor structures and, more particularly, to high voltage diode structures and methods of manufacture. The structure includes: a diode structure composed of first well of a first dopant type in a substrate; and a well ring structure of the first dopant type in the substrate which completely surrounds the first well of the first dopant type, and spaced a distance “x” from the first well to cut a leakage path to a shallower second well of a second dopant type.
摘要:
A device includes a substrate, a first well doped with dopants of a first conductivity type defined in the substrate, and a second well doped with dopants of a second conductivity type different than the first conductivity type defined in the substrate adjacent the first well to define a PN junction. The second well includes a silicon alloy portion displaced from the PN junction. A collector region contacts one of the first or second wells and has a dopant concentration higher than its contacted well. An emitter region contacts the other of the first or second wells and is doped with dopants of the first or second conductivity type different than the first or second well contacted by the emitter region. A base region contacts the other of the first or second well and has a dopant concentration higher than the first or second well contacted by the base region.
摘要:
Approaches for providing a fin field effect transistor device (FinFET) with a planar block area to enable variable fin pitch and width are disclosed. Specifically, approaches are provided for forming a plurality of fins patterned from a substrate, the plurality of fins comprising: a first set of fins having a variable pitch and a variable width; and a second set of fins having a variable pitch and a uniform width, wherein the first set of fins is adjacent the second set of fins. In one approach, the first set of fins is patterned from the planar block area, which is formed over the substrate, and the second set of fins is formed using a sidewall image transfer (SIT) process.
摘要:
The present disclosure relates to semiconductor structures and, more particularly, to high voltage diode structures and methods of manufacture. The structure includes: a diode structure composed of first well of a first dopant type in a substrate; and a well ring structure of the first dopant type in the substrate which completely surrounds the first well of the first dopant type, and spaced a distance “x” from the first well to cut a leakage path to a shallower second well of a second dopant type.
摘要:
A device includes a substrate, a first well doped with dopants of a first conductivity type defined in the substrate, and a second well doped with dopants of a second conductivity type different than the first conductivity type defined in the substrate adjacent the first well to define a PN junction. The second well includes a silicon alloy portion displaced from the PN junction. A collector region contacts one of the first or second wells and has a dopant concentration higher than its contacted well. An emitter region contacts the other of the first or second wells and is doped with dopants of the first or second conductivity type different than the first or second well contacted by the emitter region. A base region contacts the other of the first or second well and has a dopant concentration higher than the first or second well contacted by the base region.
摘要:
A semiconductor device includes a substrate, a first well doped with dopants of a first conductivity type defined in the substrate, and a second well doped with dopants of a second conductivity type different than the first conductivity type defined in the substrate adjacent the first well to define a PN junction between the first and second wells. The second well includes a silicon alloy portion displaced from the PN junction. A source region is positioned in one of the first well or the second well. A drain region is positioned in the other of the first well or the second well. A gate structure is positioned above the substrate laterally positioned between the source region and the drain region.