Abstract:
A trench is opened in a dielectric layer. The trench is then lined with a sandwiched diffusion barrier and metal liner structure and a metal seed layer. The sandwiched diffusion barrier and metal liner structure includes a conformal metal liner layer sandwiched between a first diffusion barrier layer and a second diffusion barrier layer. The metal seed layer is at least lightly doped. The lined trench is then filled by electroplating with a metal fill material. A dielectric cap layer is then deposited over the metal filled trench. Dopant from the doped metal seed layer is then migrated to an interface between the metal filled trench and the dielectric cap layer to form a self-aligned metal cap.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an opening in a layer of insulating material so as to thereby expose at least a portion of a conductive contact, performing a selective deposition process to selectively form a layer of conductive material in the opening and on the conductive contact, performing an anneal process, depositing at least one conductive material above the selectively formed conductive material layer so as to over-fill the opening, and performing at least one planarization process so as to remove excess materials to thereby define a conductive via that is positioned in the opening and conductively coupled to the conductive contact.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an opening in at least one layer of insulating material so as to thereby expose at least a portion of a conductive contact, performing a selective metal silicide formation process to selectively form a metal silicide layer in the opening and on the conductive contact, depositing at least one conductive material above the selectively formed metal silicide layer so as to over-fill the opening, and performing at least one planarization process so as to remove excess materials and thereby define a conductive via that is positioned in the opening and conductively coupled to the selectively formed metal silicide layer and to the conductive contact.
Abstract:
A structure having a diffusion barrier positioned adjacent to a sidewall and a bottom of an opening being etched in a layer of dielectric material. The structure also having a metal liner positioned directly on top of the diffusion barrier, a seed layer positioned directly on top of the metal liner, wherein the seed layer is made from a material comprising copper, a copper material positioned directly on top of the seed layer, a metallic cap positioned directly on top of and selective to the copper material, and a capping layer positioned directly on top of and adjacent to the metallic cap.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an opening in a layer of insulating material so as to thereby expose at least a portion of a conductive contact, performing a selective deposition process to selectively form a layer of conductive material in the opening and on the conductive contact, performing an anneal process, depositing at least one conductive material above the selectively formed conductive material layer so as to over-fill the opening, and performing at least one planarization process so as to remove excess materials to thereby define a conductive via that is positioned in the opening and conductively coupled to the conductive contact.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an opening in at least one layer of insulating material so as to thereby expose at least a portion of a conductive contact, performing a selective metal silicide formation process to selectively form a metal silicide layer in the opening and on the conductive contact, depositing at least one conductive material above the selectively formed metal silicide layer so as to over-fill the opening, and performing at least one planarization process so as to remove excess materials and thereby define a conductive via that is positioned in the opening and conductively coupled to the selectively formed metal silicide layer and to the conductive contact.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a barrier layer overlying a metal line of a metallization layer above a semiconductor substrate using an atomic layer deposition (ALD) process and a physical vapor deposition (PVD) process. A liner-forming material is deposited overlying the barrier layer to form a liner. A conductive metal is deposited overlying the liner.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a barrier layer overlying a metal line of a metallization layer above a semiconductor substrate using an atomic layer deposition (ALD) process and a physical vapor deposition (PVD) process. A liner-forming material is deposited overlying the barrier layer to form a liner. A conductive metal is deposited overlying the liner.
Abstract:
A structure having a diffusion barrier positioned adjacent to a sidewall and a bottom of an opening being etched in a layer of dielectric material. The structure also having a metal liner positioned directly on top of the diffusion barrier, a seed layer positioned directly on top of the metal liner, wherein the seed layer is made from a material comprising copper, a copper material positioned directly on top of the seed layer, a metallic cap positioned directly on top of and selective to the copper material, and a capping layer positioned directly on top of and adjacent to the metallic cap.