Abstract:
A method of forming a differential sensing STT MRAM design and the resulting device are provided. Embodiments include rows of programmable cells formed in a magnetoresistive random-access memory (MRAM) device, each row having a source line (SL); and rows of complimentary cells formed in the MRAM device, each row having a SL, wherein a SL of a row of programmable cells and a SL of a row of complimentary cells of a pair of rows form a merged SL.
Abstract:
A magnetic tunneling junction (MTJ) with a reference layer is less temperature sensitive and is reflow compatible at 260° C. The reference layer may be a composite reference layer having n magnetic layers separated by (n−1) non-magnetic spacer layers. The reference layers may include low temperature coefficient reference layers or a combination of low temperature coefficient and high MR reference layers to produce a low temperature sensitive reference layer with good MR.
Abstract:
A bottom pinned perpendicular magnetic tunnel junction (pMTJ) with high TMR which can withstand high temperature back-end-of-line (BEOL) processing is disclosed. The pMTJ includes a composite spacer layer between a SAF layer and a reference layer of the fixed magnetic layer of the pMTJ. The composite spacer layer includes a first non-magnetic (NM) spacer layer, a magnetic (M) spacer layer disposed over the first NM spacer layer and a second NM spacer layer disposed over the M layer. The M layer is a magnetically continuous amorphous layer, which provides a good template for the reference layer.
Abstract:
Emerging memory chips and methods for forming an emerging memory chip are presented. For example, magnetic random access memory (MRAM) chip magnetic shielding and methods of forming a magnetic shield processed at the wafer-level are disclosed. The method includes providing a magnetic shield at the front side of the chip, back side of the chip, and also in the deep trenches surrounding or adjacent to magnetic tunnel junction (MTJ) array within the prime die region. Magnetic shield in the deep trenches connects front side and back side magnetic shield. This magnetic shielding method is applicable for both in-plane and perpendicular MRAM chips. The MTJ array is formed in the prime die region and in between adjacent inter layer dielectric (ILD) levels of the upper ILD layer in the back end of line (BEOL) of the MRAM chip.
Abstract:
A device and a method of forming a device are presented. A substrate is provided. The substrate includes circuit component formed on a substrate surface. Back end of line processing is performed to form an upper inter level dielectric (ILD) layer over the substrate. The upper ILD layer includes a plurality of ILD levels. A magnetic tunneling junction (MTJ) stack is formed in between adjacent ILD levels of the upper ILD layer. The MTJ stack includes a free layer, a tunneling barrier layer and a fixed layer. The fixed layer includes a polarizer layer, a composite texture breaking layer which includes a first magnesium layer and a synthetic antiferromagnetic (SAF) layer.
Abstract:
A device and a method of forming a device are presented. A substrate is provided. The substrate includes circuit component formed on a substrate surface. Back end of line processing is performed to form an upper inter level dielectric (ILD) layer over the substrate. The upper ILD layer includes a plurality of ILD levels. A magnetic tunneling junction (MTJ) stack is formed in between adjacent ILD levels of the upper ILD layer. The MTJ stack comprises a free layer, a tunneling barrier layer and a fixed layer. The fixed layer includes a polarizer layer, a composite texture breaking layer which includes a ruthenium layer and a synthetic antiferromagnetic (SAF) layer.
Abstract:
A magnetic tunneling junction (MTJ) with a free layer that is less temperature sensitive and is reflow compatible at 260° C. The magnetic free layer may include various configurations, such as a single as-deposited crystalline magnetic layer or a composite free layer with more than one magnetic layers or a combination of composite and single magnetic layers. The layers of the composite magnetic free layer may include as-deposited crystalline magnetic free layers or a combination of as-deposited crystalline and as-deposited amorphous magnetic layers, with or without a spacer layer. An interface layer may be provided at an interface between the free layer and adjacent layer to apply tensile stress on the free layer in the direction perpendicular to the in-plane direction to enhance perpendicular magnetic anisotropy (PMA) of the free layer.
Abstract:
A spin transfer torque magnetic random access memory (STT-MRAM) device and a method to perform operations of an embedded eFlash device are disclosed. The STT-MRAM device is configured to include an array of STT-MRAM bitcells. The array includes a plurality of bitlines (BLs) and a plurality of word lines (WLs), where the bitlines form columns and the wordlines form rows of STT-MRAM bitcells. Each STT-MRAM bitcell includes a magnetic tunnel junction (MTJ) element coupled in series to an access transistor having a gate terminal and source and drain terminals. The array includes a plurality of source lines (SLs) coupled to the source terminals of the access transistors. A SL of the plurality of SLs is coupled to source terminals of access transistors of two or more adjacent columns of the STT-MRAM cells. The shared SL is parallel to the plurality of BLs. The operations of such a STT-MRAM bitcell are configured to include: an initialization operation, a program operation, and a sector erase operation.
Abstract:
Semiconductor devices and methods for forming a semiconductor device are disclosed. The method includes forming a storage unit of a magnetic memory cell. A bottom electrode and a fixed layer are formed. The fixed layer includes a composite spacer layer disposed on the bottom electrode. The composite spacer layer includes a base layer and an amorphous buffer layer disposed over the base layer. A reference layer is disposed on the composite spacer layer. The amorphous buffer layer serves as a template for the reference layer to have a desired crystalline structure in a desired orientation. At least one tunneling barrier layer is formed over the fixed layer. A storage layer is formed over the tunneling barrier layer and a top electrode is formed over the storage layer.