Abstract:
A multi-mode powertrain system is described, and includes an internal combustion engine having stop/start capability. A method for controlling the multi-mode powertrain system includes circulating coolant to a heater core via an engine fluidic circuit that includes a water jacket of the internal combustion engine when temperature of the coolant is less than an engine fluidic circuit upper temperature threshold and the engine is in an ON state. Coolant is circulated to the heater core via a bypass fluidic circuit that excludes the water jacket of the internal combustion engine when temperature of the coolant is greater than a bypass fluidic circuit lower temperature threshold when the engine is in an OFF state.
Abstract:
A system and method for charging a battery in a plug-in electric vehicle. In an exemplary embodiment, the method determines if a delayed battery charging feature is active and if the battery is severely depleted. If both conditions are satisfied, the method enables a priority charging feature that temporarily overrides the delayed charging feature and begins charging the battery according to a priority charging process until it reaches a level where it is no longer severely depleted. At this point, the method may terminate the priority charging process and initiate the delayed charging process, which is designed to take advantage of off-peak electricity rates, anticipated times of vehicle use, etc.
Abstract:
A method can be used to control a hybrid vehicle and includes the following steps: (a) receiving, via a control module, an input; (b) determining, via the control module, whether the hybrid vehicle is traveling on a highway based, at least in part, on a vehicle speed and an output torque request; (c) commanding, via the control module, the hybrid powertrain to switch from a charge-depletion mode to a blended mode if the hybrid vehicle is traveling on a highway; and (d) commanding, via the control module, the hybrid powertrain to use energy from the energy storage device via the electric motor-generator so as to maintain a substantially constant target state of charge (SOC) discharge rate.
Abstract:
A system and method for charging a battery in a plug-in electric vehicle. In an exemplary embodiment, the method determines if a delayed battery charging feature is active and if the battery is severely depleted. If both conditions are satisfied, the method enables a priority charging feature that temporarily overrides the delayed charging feature and begins charging the battery according to a priority charging process until it reaches a level where it is no longer severely depleted. At this point, the method may terminate the priority charging process and initiate the delayed charging process, which is designed to take advantage of off-peak electricity rates, anticipated times of vehicle use, etc.
Abstract:
A method of controlling an autonomously operating vehicle includes determining if the vehicle is currently occupied by a passenger, or if the vehicle is not currently occupied by a passenger. When the vehicle is currently occupied by a passenger, a vehicle controller controls at least one vehicle system to operate using a set of passenger present operating parameters. The set of passenger present operating parameters control the vehicle to provide a minimum level of passenger comfort. When the vehicle is not currently occupied by a passenger, the vehicle controller controls at least one vehicle system to operate using a set of passenger not-present operating parameters. The set of passenger not-present operating parameters control the vehicle for one of optimal energy efficiency, or for optimal vehicle diagnostic performance.
Abstract:
A method for controlling a hybrid vehicle includes the following: (a) receiving route data for a trip route; (b) determining a drive profile for the trip route based on the route data and vehicle information; (c) determining an energy deficit distribution based on an adjusted tractive power distribution defined by the drive profile compared with a generator power of the vehicle; (d) determining a minimum energy requirement energy deficit distribution; (e) determining a state of charge (SOC) threshold based on the minimum energy requirement; and (f) commanding the powertrain to operate in a charging mode when the SOC threshold is greater than the SOC of an energy storage device of the vehicle. The charging mode may be one of a condensed charging mode, a standard charging mode, and a prolonged charging mode.
Abstract:
A method can be used to control a hybrid vehicle and includes the following steps: (a) receiving, via a control module, an input; (b) determining, via the control module, whether the hybrid vehicle is traveling on a highway based, at least in part, on a vehicle speed and an output torque request; (c) commanding, via the control module, the hybrid powertrain to switch from a charge-depletion mode to a blended mode if the hybrid vehicle is traveling on a highway; and (d) commanding, via the control module, the hybrid powertrain to use energy from the energy storage device via the electric motor-generator so as to maintain a substantially constant target state of charge (SOC) discharge rate.
Abstract:
A method of controlling an autonomously operating vehicle includes determining if the vehicle is currently occupied by a passenger, or if the vehicle is not currently occupied by a passenger. When the vehicle is currently occupied by a passenger, a vehicle controller controls at least one vehicle system to operate using a set of passenger present operating parameters. The set of passenger present operating parameters control the vehicle to provide a minimum level of passenger comfort. When the vehicle is not currently occupied by a passenger, the vehicle controller controls at least one vehicle system to operate using a set of passenger not-present operating parameters. The set of passenger not-present operating parameters control the vehicle for one of optimal energy efficiency, or for optimal vehicle diagnostic performance.
Abstract:
A multi-mode powertrain system is described, and includes an internal combustion engine having stop/start capability. A method for controlling the multi-mode powertrain system includes circulating coolant to a heater core via an engine fluidic circuit that includes a water jacket of the internal combustion engine when temperature of the coolant is less than an engine fluidic circuit upper temperature threshold and the engine is in an ON state. Coolant is circulated to the heater core via a bypass fluidic circuit that excludes the water jacket of the internal combustion engine when temperature of the coolant is greater than a bypass fluidic circuit lower temperature threshold when the engine is in an OFF state.