Abstract:
A battery assembly has a first battery string including a first plurality of cells connected in series. A second battery string is connected in parallel to the first battery string and includes a second plurality of cells connected in series. A fluid channel is operatively connected to the first and the second battery strings and includes a fluid flowing within. A controller is operatively connected to the first and the second battery strings. The controller is configured to determine a desired temperature differential between the first and the second temperatures of the battery strings based at least partially on a respective strength status of the first and the second battery strings. The controller is configured to control the first and the second currents, via the fluid in the fluid channel, based at least partially on the desired temperature differential.
Abstract:
A battery assembly has a first battery string including a first plurality of cells connected in series. A second battery string is connected in parallel to the first battery string and includes a second plurality of cells connected in series. A fluid channel is operatively connected to the first and the second battery strings and includes a fluid flowing within. A controller is operatively connected to the first and the second battery strings. The controller is configured to determine a desired temperature differential between the first and the second temperatures of the battery strings based at least partially on a respective strength status of the first and the second battery strings. The controller is configured to control the first and the second currents, via the fluid in the fluid channel, based at least partially on the desired temperature differential.
Abstract:
Systems and methods are disclosed for determining a weld state of a contactor (e.g., normal, partially welded, and/or welded states) based on a variety of actuator coil characteristics during actuation. In some embodiments, the disclosed systems and methods may be utilized in connection with determining contactor weld states in a variety of contactor designs. In further embodiments, the disclosed systems and methods may utilize a probability weighted score accounting for contactor design characteristics and information obtained from a reference contactor to identify a weld state associated with a contactor device.
Abstract:
A system for fast charging an electric vehicle includes a power plug, a charger, a stationary battery, a DC/DC converter, at least one DC fast charge connector and a control unit. The power plug may be a plug which is operatively configured to engage with a standard 120V power source or a 240V power source. The charger may be a unidirectional charger or a bidirectional charger. The DC fast charge connector is adapted to be removably affixed to an electric vehicle. The control unit is in communication with at least two of the charger, the DC/DC converter, the stationary battery, and the DC fast charge connector to provide fast charge to an electric vehicle.
Abstract:
A battery system may include a plurality of subdivisions, such as battery cells or sub-packs. A measurement system configured to determine a subdivision electrical parameter associated with each of a plurality of subdivisions. A battery control may identify a subdivision satisfying a criterion based on the plurality of subdivision electrical parameters. According to some embodiments, the battery control system may determine a ratio of the subdivision electrical parameter of the identified subdivision to the electrical parameter of the battery pack. The ratio may be used to scale the electrical parameter associated with the battery pack by the ratio. According to other embodiments, the subdivision electrical parameter associated with the identified subdivision may be provided to a battery state estimation system. The scaled electrical parameter or the electrical parameter associated with the identified subdivision may be used by a battery state estimation system to generate an estimated battery state.