Abstract:
A battery electric vehicle includes a high voltage rechargeable energy storage system (RESS). The RESS includes several battery modules reconfigurable among parallel and series arrangements. During reconfiguration transitions, a low voltage battery services low voltage loads of the battery electric vehicle. The low voltage battery is preconditioned in advance of reconfigurations.
Abstract:
A vehicle is described that includes a multi-mode powertrain system having a first drive unit and a second drive unit. A controller is arranged to monitor the high-voltage DC power bus and is in communication with and operatively connected to first and second inverters. The controller is able to detect operation of one of the first inverter or the second inverter in an uncontrolled generating (UCG) mode, determine a driveline torque associated with the operating of the one of the first inverter or the second inverter in the UCG mode, and determine a compensating torque that is needed to counteract the driveline torque associated with the operating of the one of the first inverter or the second inverter in the UCG mode. The controller can further operate to detect a fault that may induce unintended lateral motion (ULM), and control torque outputs of the inverters based thereon.
Abstract:
A system and method are provided for placing a hybrid vehicle having a plurality of electric propulsion motors into an operating state in anticipation of a vehicle event, the method may include the steps of: monitoring roadway traffic and conditions surrounding a vehicle using one or more vehicle sensors and/or wireless communications; anticipating a vehicle propulsion operation change based on the monitored roadway traffic and conditions; in response to anticipating the vehicle propulsion operation change, obtaining a present propulsion operating state; and carrying out an anticipatory vehicle propulsion system transition before receiving a vehicle propulsion operation change request. The anticipatory vehicle propulsion system transition may include the steps of: calculating an intermediary propulsion operating state based on the present propulsion operating state and/or the monitored roadway traffic and conditions; and operating an internal combustion engine and a first electric propulsion motor such that the vehicle is placed in the intermediary propulsion operating state.
Abstract:
A method of controlling a powertrain system includes determining a torque request; selecting feasible input torque and input speed operating points; calculating aggregate system power losses; determining turbo efficiency as a function of a difference between a feasible input torque rate of change and a desired input torque rate of change required to reach the desired output torque; summing the turbo efficiency to the aggregate system power losses to determine total system losses corresponding to feasible input torques and input speed capable of producing the desired output torque; determining a feasible input torque and input speed corresponding to a substantially minimum total system power loss; and selecting as a desired input speed and input torque that corresponds to the substantially minimum total system power loss.
Abstract:
A battery electric vehicle includes a high voltage rechargeable energy storage system (RESS). The RESS includes several battery modules reconfigurable among parallel and series arrangements. During reconfiguration transitions, a low voltage battery services low voltage loads of the battery electric vehicle. The low voltage battery is preconditioned in advance of reconfigurations.
Abstract:
A vehicle is described that includes a multi-mode powertrain system having a first drive unit and a second drive unit. A controller is arranged to monitor the high-voltage DC power bus and is in communication with and operatively connected to first and second inverters. The controller is able to detect operation of one of the first inverter or the second inverter in an uncontrolled generating (UCG) mode, determine a driveline torque associated with the operating of the one of the first inverter or the second inverter in the UCG mode, and determine a compensating torque that is needed to counteract the driveline torque associated with the operating of the one of the first inverter or the second inverter in the UCG mode. The controller can further operate to detect a fault that may induce unintended lateral motion (ULM), and control torque outputs of the inverters based thereon.
Abstract:
A vehicle includes an electric motor, a direct current power source, and an inverter operatively connected to the direct current power source and the electric motor. The inverter is configured to convert direct current from the power source to alternating current and to transmit the alternating current to the electric motor. The inverter is characterized by an on status and an off status. A controller is operatively connected to the inverter and is configured to control whether the inverter is on or off. The controller is configured to selectively cause the inverter to enter a mode of operation in which the inverter cycles between being on and off.
Abstract:
A vehicle includes an electric motor, a direct current power source, and an inverter operatively connected to the direct current power source and the electric motor. The inverter is configured to convert direct current from the power source to alternating current and to transmit the alternating current to the electric motor. The inverter is characterized by an on status and an off status. A controller is operatively connected to the inverter and is configured to control whether the inverter is on or off. The controller is configured to selectively cause the inverter to enter a mode of operation in which the inverter cycles between being on and off.