Abstract:
Vehicle systems and methods are provided for preheating an aftertreatment system prior to engine ignition. A method involves obtaining a first measurement indicative of a current temperature associated with the aftertreatment system, obtaining a second measurement indicative of a current state of an energy source coupled to a heating element integrated with the aftertreatment system, determining an amount of electrical energy to be applied to the heating element based at least in part on a difference between the current temperature associated with the aftertreatment system and a target temperature for the aftertreatment system, and automatically enabling current flow from the energy source to the heating element prior to ignition of the engine for a duration of time in a manner that is influenced by the amount of electrical energy to be applied to the heating element and the current state of the energy source.
Abstract:
A method for operating a spark-ignition direct-injection internal combustion engine coupled to an exhaust aftertreatment system including a catalytic converter includes monitoring an operating state of the catalytic converter. The method further includes determining if a piston of the engine is entering an intake stroke. The method further includes injecting a first quantity of fuel into a cylinder in which the piston of the engine is entering the intake stroke, and injecting a second quantity of fuel into the cylinder in which the piston of the engine is entering the intake stroke.
Abstract:
An engine control system of a vehicle includes a starter control module and an abort module. When a clutch pedal is depressed and a user activates an ignition system, the starter control module engages a starter motor with an engine and applies current to the starter motor. The abort module selectively generates an abort signal when the clutch pedal is released. The starter control module disengages the starter motor and disables current flow to the starter motor when the abort signal is generated.
Abstract:
An engine control system of a vehicle includes a starter control module and an abort module. When a clutch pedal is depressed and a user activates an ignition system, the starter control module engages a starter motor with an engine and applies current to the starter motor. The abort module selectively generates an abort signal when the clutch pedal is released. The starter control module disengages the starter motor and disables current flow to the starter motor when the abort signal is generated.
Abstract:
The concepts described herein relate to a system, method, and/or apparatus for monitoring a NOx sensor that is arranged in an exhaust gas feedstream of an internal combustion engine downstream of an exhaust aftertreatment system to detect a fault related to the NOx sensor. This includes utilizing a catalyst efficiency model to detect occurrence of a fault that may indicate an in-range biased or stuck NOx sensor.
Abstract:
A vehicle propulsion system includes an internal combustion engine with a first combustion chamber and a second combustion chamber, a catalytic converter in an exhaust stream in communication with an exhaust of the internal combustion engine, a gasoline particulate filter in the exhaust stream downstream of the catalytic converter, and a controller in communication with the internal combustion engine. The controller is programmed to determine if a soot loading of the gasoline particulate filter exceeds a predetermined threshold, and adjust a set of engine operating parameters of the internal combustion engine to disable combustion in the first combustion chamber and enrich a fuel mixture in the second combustion chamber if the soot loading in the gasoline particulate filter exceeds the predetermined threshold.
Abstract:
A torque requesting module generates a torque request for an engine based on driver input. A model predictive control (MPC) module: identifies sets of possible target values based on the torque request, each of the sets of possible target values including target effective throttle area percentage; determines predicted operating parameters for the sets of possible target values, respectively; determines cost values for the sets of possible target values, respectively; selects one of the sets of possible target values based on the cost values; and sets target values based on the possible target values of the selected one of the sets, respectively, the target values including a target pressure ratio across the throttle valve. A target area module determines a target opening area of the throttle valve based on the target effective throttle area percentage ratio. A throttle actuator module controls the throttle valve based on the target opening.
Abstract:
A system according to the principles of the present disclosure includes a desired injection duration module, a fuel control module, and a throttle control module. The desired injection duration module determines a desired injection duration. The fuel control module compares the desired injection duration to an injection duration limit and controls a fuel injector of an engine based on the injection duration limit when the desired injection duration is greater than the injection duration limit. The throttle control module controls a throttle of the engine based on the injection duration limit when the desired injection duration is greater than the injection duration limit.
Abstract:
A system according to the principles of the present disclosure includes a pump control module and a fuel vaporization module. The pump control module controls a first pump to deliver fuel from a fuel tank to a second pump through a fuel line. The pump control module controls the second pump to pressurize fuel from the fuel line and to deliver the pressurized fuel to a fuel rail. The fuel vaporization module determines whether fuel at an inlet of the second pump is vaporizing based on an engine operating condition. The pump control module increases an output of the first pump when fuel at the inlet of the second pump is vaporizing.
Abstract:
Methods and systems are provided for recirculation of an engine exhaust gas. The system includes an engine, an exhaust system configured to channel exhaust gas from the engine to an outlet, an aftertreatment device, an exhaust recirculation system configured to divert at least some of the exhaust gas as recirculated exhaust gas from a first position in the exhaust system downstream of the aftertreatment device, through a buffer tank, and to a second position in the exhaust system upstream of the aftertreatment device, wherein the recirculated exhaust gas is combined with the exhaust gas at the second position, a controller configured to, by a processor, selectively operate the exhaust recirculation system to control the exhaust recirculation system to divert the exhaust gas and thereby cause the recirculated exhaust gas to be treated with the aftertreatment device more than once with sequentially increased catalyst temperatures.