Abstract:
A battery electric system for a motor vehicle or another electrified system includes a battery pack connected to a direct current voltage bus, and having positive and negative battery terminals, a main pyrotechnic fuse (“pyro fuse”), a high-voltage (HV) component connected to the bus via an HV channel, a current sensing element connected to the HV component on the HV channel, and a control system configured to selectively disconnect the battery pack from the bus by transmitting a voltage signal to the main pyro fuse when a measured current value from the current sensor is indicative of a short-circuit fault. A channel switch may be connected to or integral with the current sensing element, and configured to disconnect the HV component from the bus by opening in response to the measured current value.
Abstract:
A cooling system for a rechargeable energy system includes a plurality of bus bars, a cooling plate configured for cooling the plurality of bus bars and disposed in a thermally-conductive relationship with a portion of each of the plurality of bus bars, and an isolation component disposed between and in contact with the cooling plate and each of the plurality of bus bars. A rechargeable energy storage system and device are also described.
Abstract:
An apparatus for flexible DC fast charging of an electrified vehicle includes a charge receptacle and a vehicle charging controller programmed to establish a wireless communication with a charging station. The apparatus further includes a reconfigurable energy storage system selectively and electrically connected to the charge receptacle. The reconfigurable energy storage system includes a first rechargeable energy storage device selectively and electrically connected to the charge receptacle, a second rechargeable energy storage device selectively connected to the charge receptacle, and a plurality of low-loss switching devices selectively connected to the first rechargeable energy storage device and the second rechargeable energy storage device. The vehicle charging controller is programmed to selectively actuate the plurality of low-loss switching devices based on the charging voltage of the charging station such that a nominal voltage of the reconfigurable energy storage system matches the charging voltage of the charging station.
Abstract:
System and methods for measuring parameters of a battery system using a battery sensing circuit are presented. In certain embodiments, the systems and methods allow a vehicle battery sensing circuit and/or other associated system to measure a compensation parameter. The compensation parameter may be utilized by the battery sensing circuit and/or other associated system in measuring other parameters relating to the battery system including cell voltages.
Abstract:
A battery electric system for a motor vehicle or another electrified system includes a battery pack connected to a direct current voltage bus, and having positive and negative battery terminals, a main pyrotechnic fuse (“pyro fuse”), a high-voltage (HV) component connected to the bus via an HV channel, a current sensing element connected to the HV component on the HV channel, and a control system configured to selectively disconnect the battery pack from the bus by transmitting a voltage signal to the main pyro fuse when a measured current value from the current sensor is indicative of a short-circuit fault. A channel switch may be connected to or integral with the current sensing element, and configured to disconnect the HV component from the bus by opening in response to the measured current value.
Abstract:
A method is provided for controlling a vehicle battery system that includes a voltage bus having positive and negative bus rails, at least one battery pack connected to the voltage bus and having positive and negative battery terminals, and a battery disconnect unit. The method includes disconnecting the at least one battery pack from the voltage bus via the battery disconnect unit by performing a first battery disconnect process upon detecting an event condition, by performing a second battery disconnect process upon detecting a high overcurrent condition, and by performing a third battery disconnect process upon detecting a low overcurrent condition. The first battery disconnect process utilizes opening a main pyro fuse, the second battery disconnect process utilizes one or more of thermal fuses, solid-state relays and/or current sensors, and the third battery disconnect process utilizes one or more contactors or solid-state relays.
Abstract:
An apparatus for flexible DC fast charging of an electrified vehicle includes a charge receptacle and a vehicle charging controller programmed to establish a wireless communication with a charging station. The apparatus further includes a reconfigurable energy storage system selectively and electrically connected to the charge receptacle. The reconfigurable energy storage system includes a first rechargeable energy storage device selectively and electrically connected to the charge receptacle, a second rechargeable energy storage device selectively connected to the charge receptacle, and a plurality of low-loss switching devices selectively connected to the first rechargeable energy storage device and the second rechargeable energy storage device. The vehicle charging controller is programmed to selectively actuate the plurality of low-loss switching devices based on the charging voltage of the charging station such that a nominal voltage of the reconfigurable energy storage system matches the charging voltage of the charging station.
Abstract:
An apparatus for flexible DC fast charging of an electrified vehicle includes a charge receptacle and a vehicle charging controller programmed to establish a wireless communication with a charging station. The apparatus further includes a reconfigurable energy storage system selectively and electrically connected to the charge receptacle. The reconfigurable energy storage system includes a first rechargeable energy storage device selectively and electrically connected to the charge receptacle, a second rechargeable energy storage device selectively connected to the charge receptacle, and a plurality of low-loss switching devices selectively connected to the first rechargeable energy storage device and the second rechargeable energy storage device. The vehicle charging controller is programmed to selectively actuate the plurality of low-loss switching devices based on the charging voltage of the charging station such that a nominal voltage of the reconfigurable energy storage system matches the charging voltage of the charging station.
Abstract:
An electrical system includes a battery disconnect unit (BDU) connected to a rechargeable energy storage system (RESS) via a high-voltage bus. The BDU has one or more contactors that close responsive a low-voltage drive current to thereby connect the RESS to the high-voltage bus. A low-voltage drive circuit conducts the drive current to the contactor(s). Opening of a low-voltage connection interrupts the drive current and causes the contactor(s) to transition from the closed state to an open state. The contactor(s) open in response to interruption of the drive current to thereby disconnect the RESS. The contactor(s) may be closed again after a lockout safety procedure, such that reestablishing the electrical connection does not itself re-energize the high-voltage bus. An electrified powertrain includes a transmission, electric machine, power inverter module, and the above-noted electrical system.
Abstract:
An electrical system includes a battery disconnect unit (BDU) connected to a rechargeable energy storage system (RESS) via a high-voltage bus. The BDU has one or more contactors that close responsive a low-voltage drive current to thereby connect the RESS to the high-voltage bus. A low-voltage drive circuit conducts the drive current to the contactor(s). Opening of a low-voltage connection interrupts the drive current and causes the contactor(s) to transition from the closed state to an open state. The contactor(s) open in response to interruption of the drive current to thereby disconnect the RESS. The contactor(s) may be closed again after a lockout safety procedure, such that reestablishing the electrical connection does not itself re-energize the high-voltage bus. An electrified powertrain includes a transmission, electric machine, power inverter module, and the above-noted electrical system.