Abstract:
A method and system for autonomously navigating a vehicle toward a passenger route endpoint using a telematics unit installed in the vehicle. The method carried out by the system includes the steps of determining that the vehicle is approaching the passenger route endpoint and remotely navigating the vehicle by identifying a passenger endpoint location near the passenger route endpoint using at least a remote facility separate from the vehicle. The passenger endpoint location may be determined from at least a current or real-time status of a passenger endpoint condition at the passenger route endpoint.
Abstract:
A method implemented in a smartphone associated with a transportation apparatus to detect a crash of the transportation apparatus, comprises receiving a signal generated in time domain by a sensor of the smartphone in response to an event triggered by motion of the smartphone. The method further comprises transforming the signal to a delay domain to generate a two-dimensional representation of the signal in the delay domain. The method further comprises processing the two-dimensional representation using a Hough transform to select lines from the two-dimensional representation having a parameter greater than or equal to a predetermined threshold. The method further comprises determining a pattern associated with the selected lines, comparing the pattern to a predetermined pattern indicating crash event of the transportation apparatus, and determining based on the comparison whether the event indicates crash event of the transportation apparatus.
Abstract:
A method of providing hands-free services using a mobile device having wireless access to computer-based services includes carrying out a completed speech session via a mobile device without any physical interaction with the mobile device, wherein the speech session includes receiving a speech input from a user, and obtaining from a cloud service a service result responsive to the speech input, and providing the service result as a speech response presented to the user.
Abstract:
A method of providing hands-free services using a mobile device having wireless access to computer-based services includes establishing a short range wireless connection between a mobile device and one or more audio devices that include at least a microphone and speaker; receiving at the mobile device speech inputted via the microphone from a user and sent via the short range wireless connection; wirelessly transmitting the speech input from the mobile device to a speech recognition server that provides automated speech recognition (ASR); receiving at the mobile device a speech recognition result representing the content of the speech input; determining a desired service by processing the speech recognition result using a first, service-identifying grammar; determining a user service request by processing at least some of the speech recognition result using a second, service-specific grammar associated with the desired service; initiating the user service request and receiving a service response; generating an audio message from the service response; and presenting the audio message to the user via the speaker.
Abstract:
A control system for a vehicle is provided. The system includes a Universal Serial Bus Type-C (USB) port configured to receive a plug of a wired connection to an external system for the transfer of at least one of power or data. The system further includes a processor coupled to the USB port and configured to at least facilitate the transfer of the at least one of power or data between the vehicle and the external system via the USB port.
Abstract:
A communication system and method utilizing the communication system. The method includes performing a vehicle function based on a proximity of two wireless devices to a vehicle. The steps of method include: establishing a short-range wireless communication (SRWC) link between a SRWC system on the vehicle and a first wireless device; establishing another SRWC link between the SRWC system and a second wireless device, wherein the first and second wireless devices are associated with a common user; receiving a wireless signal at the SRWC system from each of the first and second wireless devices; determining a proximity of the two wireless devices based on receiving the wireless signals; and performing a vehicle function based on the determined location.
Abstract:
A method of providing hands-free services using a mobile device having wireless access to computer-based services includes carrying out a completed speech session via a mobile device without any physical interaction with the mobile device, wherein the speech session includes receiving a speech input from a user, and obtaining from a cloud service a service result responsive to the speech input, and providing the service result as a speech response presented to the user.
Abstract:
A mobile voice platform for providing a user speech interface to computer-based services includes a mobile device having a processor, communication circuitry that provides access to the computer-based services, an operating system, and one or more applications that are run using the operating system and that utilize one or more of the computer-based services via the communication circuitry. The mobile voice platform includes at least one non-transient digital storage medium storing a program module having computer instructions that, upon execution by the processor, receives speech recognition results representing user speech that has been processed using automated speech recognition, determines a desired computer-based service based on the speech recognition results, accesses a remotely-stored service interface associated with the desired service, initiates the desired service using the service interface, receives a service result from the desired service, and provides a text-based service response for conversion to a speech response to be provided to the user.
Abstract:
A method of providing hands-free services using a mobile device having wireless access to computer-based services includes establishing a short range wireless connection between a mobile device and one or more audio devices that include at least a microphone and speaker; receiving at the mobile device speech inputted via the microphone from a user and sent via the short range wireless connection; wirelessly transmitting the speech input from the mobile device to a speech recognition server that provides automated speech recognition (ASR); receiving at the mobile device a speech recognition result representing the content of the speech input; determining a desired service by processing the speech recognition result using a first, service-identifying grammar; determining a user service request by processing at least some of the speech recognition result using a second, service-specific grammar associated with the desired service; initiating the user service request and receiving a service response; generating an audio message from the service response; and presenting the audio message to the user via the speaker.
Abstract:
A mobile voice platform providing a user speech interface to computer-based services uses a device having a processor, communication circuitry, an operating system, and applications that are run using the operating system and that utilize the computer-based services via the communication circuitry. The mobile voice platform includes a non-transient digital storage medium storing first and second program modules. Upon execution by the processor the first program module receives speech recognition results, determines a desired service based on the speech recognition results, and provides at least some of the speech recognition results to the second program module. The second program module, when executed, generates a service request based on the speech recognition results provided from the first program module, provides the service request to one or more of the computer-based services, obtains a service result from the computer-based service(s), and supplies the first program module with a response.