STATE-MATRIX-INDEPENDENT DYNAMIC PROCESS ESTIMATION METHOD IN REAL-TIME FOR WEAKLY OBSERVABLE MEASUREMENT NODES WITHOUT PMU
    1.
    发明申请
    STATE-MATRIX-INDEPENDENT DYNAMIC PROCESS ESTIMATION METHOD IN REAL-TIME FOR WEAKLY OBSERVABLE MEASUREMENT NODES WITHOUT PMU 有权
    状态 - 矩阵独立的动态过程估计方法实时地用于无PMU的可观察的测量点

    公开(公告)号:US20120283967A1

    公开(公告)日:2012-11-08

    申请号:US13497512

    申请日:2009-12-09

    摘要: A state-matrix-independent dynamic process estimation method in real-time for weakly observable measurement nodes without PMU is only dependent on real-time measurement dynamic data of measurement nodes with Phasor Mesurement Unit (PMU) and measurement data of Supervisory Control And Data Acquisition (SCADA) system in electric power system or state estimation data. According to the SCADA measurement data or state estimation data at some continuous moments, the method utilizes recursive least squares solution to find a linear combination relationship between variation of measurement parameter to be estimated of nodes without PMU and variation of corresponding measurement parameter of nodes with PMU. Using the linear combination of relationship, the dynamic process of measurement nodes without PMU is estimated in real-time. The method provides high estimation precision and meets error requirements of engineering application.

    摘要翻译: 对于弱PMI测量节点,实时状态矩无关动态过程估计方法仅依赖于相量测量单元(PMU)和监控控制与数据采集测量数据的实时测量动态数据 (SCADA)系统或状态估计数据。 根据SCADA测量数据或某些连续时刻的状态估计数据,该方法利用递归最小二乘解求解PMU节点测量参数变化与PMU节点对应测量参数变化之间的线性组合关系 。 使用线性关系的组合,实时估计无PMU的测量节点的动态过程。 该方法提供高估计精度,满足工程应用的误差要求。

    State-matrix-independent dynamic process estimation method in real-time for weakly observable measurement nodes without PMU
    2.
    发明授权
    State-matrix-independent dynamic process estimation method in real-time for weakly observable measurement nodes without PMU 有权
    对于弱PMI测量节点,实时状态矩无关动态过程估计方法

    公开(公告)号:US09178386B2

    公开(公告)日:2015-11-03

    申请号:US13497512

    申请日:2009-12-09

    IPC分类号: H02J13/00 G01R19/25

    摘要: A state-matrix-independent dynamic process estimation method in real-time for weakly observable measurement nodes without Phasor Measurement Unit(PMU) is only dependent on real-time measurement dynamic data of measurement nodes with PMU and measurement data of Supervisory Control And Data Acquisition (SCADA) system in electric power system or state estimation data. According to the SCADA measurement data or state estimation data at some continuous moments, the method utilizes recursive least squares solution to find a linear combination relationship between variation of measurement parameter to be estimated of nodes without PMU and variation of corresponding measurement parameter of nodes with PMU. Using the linear combination of relationship, the dynamic process of measurement nodes without PMU is estimated in real-time. The method provides high estimation precision and meets error requirements of engineering application.

    摘要翻译: 弱相关测量单元(PMU)的弱观测测量节点的状态矩无关动态过程估计方法仅取决于PMU测量节点与监控和数据采集测量数据的实时测量动态数据 (SCADA)系统或状态估计数据。 根据SCADA测量数据或某些连续时刻的状态估计数据,该方法利用递归最小二乘解求解PMU节点测量参数变化与PMU节点对应测量参数变化之间的线性组合关系 。 使用线性关系的组合,实时估计无PMU的测量节点的动态过程。 该方法提供高估计精度,满足工程应用的误差要求。

    Video coding using spatio-temporal texture synthesis
    3.
    发明授权
    Video coding using spatio-temporal texture synthesis 有权
    视频编码采用时空纹理合成

    公开(公告)号:US08208556B2

    公开(公告)日:2012-06-26

    申请号:US11768862

    申请日:2007-06-26

    IPC分类号: H04N11/04

    摘要: Systems and methods for video coding using spatio-temporal texture synthesis are described. In one aspect, a video data coding pipeline portion of the codec removes texture blocks from the video data to generate coded video data. The removed texture blocks are selected based on an objective determination that each of the remove texture blocks can be synthesized from spatio-temporal neighboring samples during decoding operations. The objective determinations are made using local block-based motion information independent of global motion models. An indication of which texture blocks were removed is provided to a decoder in addition to the coded video data. Decoding logic of the codec decodes the video data using a standard decoding algorithm. The decoding logic also restores the removed texture blocks via spatio-temporal texture synthesis to generate synthesized video data. The decoded and synthesized video data is presented to a user.

    摘要翻译: 描述使用时空纹理合成的视频编码的系统和方法。 一方面,编解码器的视频数据编码流水线部分从视频数据中去除纹理块以产生编码视频数据。 基于在解码操作期间可以从空时相邻采样中合成每个去除纹理块的目标确定来选择去除的纹理块。 使用与全局运动模型无关的局部基于块的运动信息进行客观确定。 去除了纹理块的指示除了编码的视频数据之外还提供给解码器。 编解码器的解码逻辑使用标准解码算法解码视频数据。 解码逻辑还通过空间 - 时间纹理合成恢复去除的纹理块,以产生合成的视频数据。 解码和合成的视频数据被呈现给用户。

    Transcoding Hierarchical B-Frames with Rate-Distortion Optimization in the DCT Domain
    5.
    发明申请
    Transcoding Hierarchical B-Frames with Rate-Distortion Optimization in the DCT Domain 审中-公开
    在DCT域中使用速率失真优化的转码分层B帧

    公开(公告)号:US20080056354A1

    公开(公告)日:2008-03-06

    申请号:US11468253

    申请日:2006-08-29

    IPC分类号: H04N7/12

    摘要: Transcoding hierarchical B-frames with rate-distortion optimization in the DCT domain is described. More particularly, and in one aspect, input media content is transcoded from an original bit rate to a reduced bit rate. The input media content includes multiple hierarchical bidirectional frames (“B-frames”), multiple intra-frames (I-frames), and multiple predictive frames (P-frames). Each B-frame is open-loop transcoded in view of the reduced bit rate by optimizing texture and motion rate-distortion in the DCT domain to generate a respective portion of transcoded media content. The transcoded media content, which includes transcoded B-frames, I-frames, and P-frames, is provided to a user for viewing.

    摘要翻译: 描述了在DCT域中用码率失真优化代码转换分级B帧。 更具体地,并且在一个方面,将输入媒体内容从原始比特率转码为降低的比特率。 输入媒体内容包括多个分级双向帧(“B帧”),多个帧内(I帧)和多个预测帧(P帧)。 考虑到降低的比特率,通过优化DCT域中的纹理和运动速率失真来生成各代码转换的媒体内容的每个B帧是开环转码的。 将包含代码转换的B帧,I帧和P帧的代码转换的媒体内容提供给用户进行观看。

    Image compression based on parameter-assisted inpainting
    6.
    发明授权
    Image compression based on parameter-assisted inpainting 有权
    基于参数辅助修复的图像压缩

    公开(公告)号:US08311347B2

    公开(公告)日:2012-11-13

    申请号:US11558755

    申请日:2006-11-10

    IPC分类号: G06K9/36 G06K9/46

    摘要: Systems and methods provide image compression based on parameter-assisted inpainting. In one implementation of an encoder, an image is partitioned into blocks and the blocks classified as smooth or unsmooth, based on the degree of visual edge content and chromatic variation in each block. Image content of the unsmooth blocks is compressed, while image content of the smooth blocks is summarized by parameters, but not compressed. The parameters, once obtained, may also be compressed. At a decoder, the compressed image content of the unsmooth blocks and the compressed parameters of the smooth blocks are each decompressed. Each smooth block is then reconstructed by inpainting, guided by the parameters in order to impart visual detail from the original image that cannot be implied from the image content of neighboring blocks that have been decoded.

    摘要翻译: 系统和方法提供基于参数辅助修复的图像压缩。 在编码器的一个实现中,基于每个块中的视觉边缘内容的程度和色度变化,将图像划分为块,并将块分类为平滑或不平滑。 不平滑块的图像内容被压缩,而平滑块的图像内容由参数汇总,但不被压缩。 一旦获得的参数也可以被压缩。 在解码器处,解压缩不平滑块的压缩图像内容和平滑块的压缩参数。 然后通过修饰重建每个平滑块,由参数引导,以便从原始图像传递不能从已经被解码的相邻块的图像内容中隐含的视觉细节。

    Learning-Based Image Compression
    7.
    发明申请
    Learning-Based Image Compression 有权
    基于学习的图像压缩

    公开(公告)号:US20090067491A1

    公开(公告)日:2009-03-12

    申请号:US11851653

    申请日:2007-09-07

    IPC分类号: G06T9/00

    摘要: Learning-based image compression is described. In one implementation, an encoder possessing a first set of learned visual knowledge primitives excludes visual information from an image prior to compression. A decoder possessing an independently learned set of visual knowledge primitives synthesizes the excluded visual information into the image after decompression. The encoder and decoder are decoupled with respect to the information excluded at the encoder and the information synthesized at the decoder. This results in superior data compression since the information excluded at the encoder is dropped completely and not transferred to the decoder. Primitive visual elements synthesized at the decoder may be different than primitive visual elements dropped at the encoder, but the resulting reconstituted image is perceptually equivalent to the original image.

    摘要翻译: 描述基于学习的图像压缩。 在一个实现中,具有第一组学习视觉知识原语的编码器在压缩之前从图像中排除视觉信息。 具有独立学习的视觉知识图元组的解码器在解压缩之后将排除的视觉信息合成到图像中。 编码器和解码器相对于在编码器处排除的信息和在解码器处合成的信息去耦合。 这导致优异的数据压缩,因为在编码器处排除的信息完全丢弃并且不传送到解码器。 在解码器处合成的原始视觉元素可能不同于在编码器处丢弃的原始视觉元素,但是所产生的重构图像在听觉上等同于原始图像。

    Content adaptive deblocking during video encoding and decoding
    9.
    发明授权
    Content adaptive deblocking during video encoding and decoding 有权
    视频编码和解码过程中的内容自适应去块

    公开(公告)号:US08787443B2

    公开(公告)日:2014-07-22

    申请号:US12924836

    申请日:2010-10-05

    IPC分类号: H04B1/66 H04N7/26

    摘要: Disclosed herein are exemplary embodiments of methods, apparatus, and systems for performing content-adaptive deblocking to improve the visual quality of video images compressed using block-based motion-predictive video coding. For instance, in certain embodiments of the disclosed technology, edge information is obtained using global orientation energy edge detection (“OEED”) techniques on an initially deblocked image. OEED detection can provide a robust partition of local directional features (“LDFs”). For a local directional feature detected in the partition, a directional deblocking filter having an orientation corresponding to the orientation of the LDF can be used. The selected filter can have a filter orientation and activation thresholds that better preserve image details while reducing blocking artifacts. In certain embodiments, for a consecutive non-LDF region, extra smoothing can be imposed to suppress the visually severe blocking artifacts.

    摘要翻译: 这里公开了用于执行内容自适应解块以改善使用基于块的运动预测视频编码压缩的视频图像的视觉质量的方法,装置和系统的示例性实施例。 例如,在所公开的技术的某些实施例中,边缘信息是使用最初去块图像上的全局取向能量边缘检测(“OEED”)技术获得的。 OEED检测可以提供局部方向特征(“LDFs”)的鲁棒分区。 对于在分区中检测到的局部方向特征,可以使用具有与LDF的取向对应的取向的定向去块滤波器。 所选择的过滤器可以具有过滤器方向和激活阈值,以更好地保留图像细节,同时减少块伪影。 在某些实施例中,对于连续的非LDF区域,可以施加额外的平滑来抑制视觉上严重的块状伪影。

    IMAGE RESTORATION BY VECTOR QUANTIZATION UTILIZING VISUAL PATTERNS
    10.
    发明申请
    IMAGE RESTORATION BY VECTOR QUANTIZATION UTILIZING VISUAL PATTERNS 有权
    通过使用视觉图案的矢量量化图像恢复

    公开(公告)号:US20130129197A1

    公开(公告)日:2013-05-23

    申请号:US13746174

    申请日:2013-01-21

    申请人: Feng Wu Xiaoyan Sun

    发明人: Feng Wu Xiaoyan Sun

    IPC分类号: G06T5/00

    摘要: The restoration of images by vector quantization utilizing visual patterns is disclosed. One disclosed embodiment comprises restoring detail in a transition region of an unrestored image, by first identifying the transition region and forming blurred visual pattern blocks. These blurred visual pattern blocks are compared to a pre-trained codebook, and a corresponding high-quality visual pattern blocks is obtained. The high-quality visual pattern block is then blended with the unrestored image to form a restored image.

    摘要翻译: 公开了通过使用视觉图案的矢量量化来恢复图像。 一个公开的实施例包括通过首先识别过渡区域并形成模糊的视觉图案块来恢复未恢复图像的过渡区域中的细节。 将这些模糊的视觉图案块与预训练的码本进行比较,并获得相应的高质量可视图案块。 然后将高质量的视觉图案块与未恢复的图像混合以形成恢复的图像。